亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using group-based trajectory modeling to characterize the association of past ACEIs/ARBs adherence with subsequent statin adherence patterns among new statin users

医学 他汀类 逻辑回归 多项式logistic回归 内科学 回顾性队列研究 物理疗法 机器学习 计算机科学
作者
Zahra Majd,Anjana Mohan,Susan Abughosh
出处
期刊:Journal of the American Pharmacists Association [Elsevier]
卷期号:61 (6): 829-837.e2 被引量:4
标识
DOI:10.1016/j.japh.2021.07.007
摘要

Despite well-documented benefits, statin adherence remains suboptimal. Studies have suggested that previous adherence to other chronic medications is a strong predictor of future adherence to newly initiated statins. Group-based trajectory modeling (GBTM) has been applied as a method to longitudinally depict the dynamic nature of adherence.This study aimed to examine the association between patients' adherence patterns to newly initiated statins and previous adherence trajectories of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) using GBTM.This retrospective cohort study was conducted among continuously enrolled statin initiators using claims data. Patients were included if they had ACEI/ARB use within 1 year before statin initiation (preindex period). Monthly adherence to ACEIs/ARBs was calculated during the preindex period and monthly adherence to statins was assessed 1 year after statin initiation using proportion of days covered (PDC). The monthly PDCs were modeled as a longitudinal response in a logistic GBTM to provide distinct patterns of adherence for ACEIs/ARBs and statins, separately. A multinomial logistic regression was conducted to determine an association between ACEI/ARB adherence trajectories and future statin trajectories, controlling for patient characteristics.A total of 1078 patients were categorized into 4 distinct statin adherence trajectories: adherent (40.8%), gradual decline (37.4%), gaps in adherence (13.9%), and rapid decline (7.9%). Patients were further categorized into 4 groups on the basis of their distinct past ACEIs/ARBs trajectories: adherent (43%), gaps in adherence (29%), delayed nonadherence (15.2%), and gradual decline (12.8%). In the multinomial logistic regression, patients in the gaps in adherence or gradual decline groups were more likely to follow similar trajectories for future statin use than the adherent trajectory.Previous adherence trajectories of ACEIs/ARBs may predict future adherence patterns for newly initiated statins. Knowledge of past medication-taking behavior could provide valuable information for developing tailored interventions to improve adherence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助22采纳,获得10
1秒前
Akim应助Mercy采纳,获得10
8秒前
成就的笑南完成签到 ,获得积分0
11秒前
12秒前
14秒前
谷雨秋发布了新的文献求助10
19秒前
yihanghh完成签到 ,获得积分10
19秒前
jsndjcu发布了新的文献求助10
22秒前
茶叶派完成签到,获得积分10
23秒前
24秒前
Tendency完成签到 ,获得积分0
26秒前
29秒前
ccj完成签到,获得积分20
32秒前
Crw__完成签到,获得积分10
37秒前
trxie完成签到,获得积分20
40秒前
44秒前
ccj发布了新的文献求助10
50秒前
英姑应助yuanyuan采纳,获得50
51秒前
心行完成签到 ,获得积分10
53秒前
oleskarabach完成签到,获得积分20
53秒前
俊逸翠柏完成签到 ,获得积分10
56秒前
bellapp完成签到 ,获得积分10
56秒前
1分钟前
沉默的延恶完成签到,获得积分10
1分钟前
笨笨的怜雪完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
21度多云完成签到,获得积分10
1分钟前
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
1分钟前
橘子发布了新的文献求助10
2分钟前
qiuqiu完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
SCIfafafafa发布了新的文献求助10
2分钟前
hua完成签到,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746419
求助须知:如何正确求助?哪些是违规求助? 5434098
关于积分的说明 15355366
捐赠科研通 4886387
什么是DOI,文献DOI怎么找? 2627215
邀请新用户注册赠送积分活动 1575696
关于科研通互助平台的介绍 1532425