3D MSSD: A multilayer spatial structure 3D object detection network for mobile LiDAR point clouds

点云 激光雷达 对象(语法) 地图学 遥感 基于对象 目标检测 计算机科学 地理 点(几何) 人工智能 模式识别(心理学) 数学 几何学
作者
Zongyue Wang,Qiming Xia,Jing Du,Shangfeng Huang,Jinhe Su,José Marcato,Jonathan Li,Guorong Cai
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:102: 102406-102406 被引量:12
标识
DOI:10.1016/j.jag.2021.102406
摘要

Point cloud-based object detection is vital and essential for many real-world applications, such as autonomous driving and robot vision. The PointPillars model has achieved the efficient detection of objects in front of a vehicle. However, the algorithm does not consider the spatial structures semantic information stored in the three-dimensional point cloud for a given spatial structure, thus leading to missed or false detections for objects with complex spatial structures or singular structures. We propose an approach based on PointPillars, which considers the spatial structure characteristics of 3D point clouds to enhance the detection accuracy. First, based on the specified range of the z-axis coordinates, the entire point cloud scene is divided into several layers so that the point cloud areas in the same height interval form one layer. Data from several layers are obtained. Second, the point clouds of several layers are processed with Pillar Feature Net to obtain several pseudoimages. Each pseudoimage represents the semantic information from the corresponding level of the point cloud. Third, the obtained pseudoimages from each level are merged with the pseudoimages of the entire scene to obtain a feature map with spatial structure characteristics. We apply a Region Proposal Network, and an object detection operator processes the feature map and obtains the result of object detection. Experiments show that the proposed method has a highly accurate detection effect for objects with complex spatial structures. In addition, the proposed method does not erroneously detect objects with similar semantic information after vertical dimension projection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助123csdkvikd采纳,获得10
刚刚
yishan101发布了新的文献求助10
1秒前
4y发布了新的文献求助10
1秒前
liuwenjie完成签到,获得积分10
2秒前
积极马里奥完成签到 ,获得积分10
2秒前
3秒前
隐形雁玉完成签到,获得积分10
3秒前
didida发布了新的文献求助10
3秒前
谷安完成签到,获得积分10
4秒前
4秒前
4秒前
QQQW完成签到 ,获得积分10
5秒前
111发布了新的文献求助10
6秒前
allaallalaal发布了新的文献求助30
6秒前
8秒前
8秒前
舒适梨愁完成签到,获得积分10
8秒前
不如一默发布了新的文献求助10
9秒前
木木198022完成签到,获得积分10
9秒前
10秒前
殷勤的斓发布了新的文献求助10
12秒前
13秒前
爱静静应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
爱静静应助科研通管家采纳,获得10
14秒前
爱静静应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得30
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
yx_cheng应助科研通管家采纳,获得20
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716