Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis

人工智能 计算机科学 卷积神经网络 机器学习 鉴别器 深度学习 集成学习 模式识别(心理学) 电信 探测器
作者
Wenjie Kang,Lan Lin,Baiwen Zhang,Xiaoqi Shen,Shuicai Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104678-104678 被引量:89
标识
DOI:10.1016/j.compbiomed.2021.104678
摘要

Alzheimer's Disease (AD) is a chronic neurodegenerative disease without effective medications or supplemental treatments. Thus, predicting AD progression is crucial for clinical practice and medical research. Due to limited neuroimaging data, two-dimensional convolutional neural networks (2D CNNs) have been commonly adopted to differentiate among cognitively normal subjects (CN), people with mild cognitive impairment (MCI), and AD patients. Therefore, this paper proposes an ensemble learning (EL) architecture based on 2D CNNs, using a multi-model and multi-slice ensemble. First, the top 11 coronal slices of grey matter density maps for AD versus CN classifications were selected. Second, the discriminator of a generative adversarial network, VGG16, and ResNet50 were trained with the selected slices, and the majority voting scheme was used to merge the multi-slice decisions of each model. Afterwards, those three classifiers were used to construct an ensemble model. Multi-slice ensemble learning was designed to obtain spatial features, while multi-model integration reduced the prediction error rate. Finally, transfer learning was used in domain adaptation to refine those CNNs, moving them from working solely with AD versus CN classifications to being applicable to other tasks. This ensemble approach achieved accuracy values of 90.36%, 77.19%, and 72.36% when classifying AD versus CN, AD versus MCI, and MCI versus CN, respectively. Compared with other state-of-the-art 2D studies, the proposed approach provides an effective, accurate, automatic diagnosis along the AD continuum. This technique may enhance AD diagnostics when the sample size is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
4秒前
量子星尘发布了新的文献求助30
6秒前
荔枝吖发布了新的文献求助10
7秒前
10秒前
jiuge完成签到 ,获得积分10
10秒前
鸡爪子关注了科研通微信公众号
10秒前
11秒前
12秒前
樛木完成签到 ,获得积分10
14秒前
婷婷发布了新的文献求助10
14秒前
14秒前
14秒前
乐乐应助追忆采纳,获得10
14秒前
banban完成签到 ,获得积分10
15秒前
rilin发布了新的文献求助10
17秒前
NoobMasterZYF发布了新的文献求助10
17秒前
yang发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
小马甲应助温柔的海安采纳,获得10
21秒前
优雅的沛春完成签到 ,获得积分10
23秒前
x971017完成签到,获得积分10
23秒前
24秒前
lily发布了新的文献求助10
24秒前
乖猫要努力应助李锐采纳,获得10
25秒前
ddj完成签到 ,获得积分10
25秒前
斯文明杰发布了新的文献求助10
25秒前
25秒前
More完成签到,获得积分20
26秒前
婷婷完成签到,获得积分10
26秒前
29秒前
YDX发布了新的文献求助10
29秒前
CipherSage应助SJY采纳,获得10
30秒前
NoobMasterZYF完成签到,获得积分10
30秒前
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824