Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis

人工智能 计算机科学 卷积神经网络 机器学习 鉴别器 深度学习 集成学习 模式识别(心理学) 电信 探测器
作者
Wenjie Kang,Lan Lin,Baiwen Zhang,Xiaoqi Shen,Shuicai Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104678-104678 被引量:89
标识
DOI:10.1016/j.compbiomed.2021.104678
摘要

Alzheimer's Disease (AD) is a chronic neurodegenerative disease without effective medications or supplemental treatments. Thus, predicting AD progression is crucial for clinical practice and medical research. Due to limited neuroimaging data, two-dimensional convolutional neural networks (2D CNNs) have been commonly adopted to differentiate among cognitively normal subjects (CN), people with mild cognitive impairment (MCI), and AD patients. Therefore, this paper proposes an ensemble learning (EL) architecture based on 2D CNNs, using a multi-model and multi-slice ensemble. First, the top 11 coronal slices of grey matter density maps for AD versus CN classifications were selected. Second, the discriminator of a generative adversarial network, VGG16, and ResNet50 were trained with the selected slices, and the majority voting scheme was used to merge the multi-slice decisions of each model. Afterwards, those three classifiers were used to construct an ensemble model. Multi-slice ensemble learning was designed to obtain spatial features, while multi-model integration reduced the prediction error rate. Finally, transfer learning was used in domain adaptation to refine those CNNs, moving them from working solely with AD versus CN classifications to being applicable to other tasks. This ensemble approach achieved accuracy values of 90.36%, 77.19%, and 72.36% when classifying AD versus CN, AD versus MCI, and MCI versus CN, respectively. Compared with other state-of-the-art 2D studies, the proposed approach provides an effective, accurate, automatic diagnosis along the AD continuum. This technique may enhance AD diagnostics when the sample size is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXL完成签到,获得积分10
1秒前
N_wh完成签到,获得积分10
1秒前
安静的棉花糖完成签到 ,获得积分10
1秒前
闾丘曼安完成签到,获得积分10
1秒前
尼卡应助suy采纳,获得10
1秒前
1秒前
2秒前
思源应助xyz采纳,获得10
2秒前
2秒前
中华有为发布了新的文献求助10
3秒前
3秒前
FashionBoy应助wwww采纳,获得10
3秒前
3秒前
大方嵩发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
猪猪发布了新的文献求助10
5秒前
单薄白薇发布了新的文献求助10
5秒前
豆子完成签到,获得积分10
6秒前
通~发布了新的文献求助10
7秒前
橘子哥完成签到,获得积分10
7秒前
mnm发布了新的文献求助10
8秒前
柔弱凡松发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
SHDeathlock发布了新的文献求助50
9秒前
乐乐应助hu970采纳,获得10
9秒前
单薄白薇完成签到,获得积分10
11秒前
陈杰发布了新的文献求助10
11秒前
11秒前
11秒前
小张张发布了新的文献求助10
11秒前
乐乐应助YAN采纳,获得10
12秒前
迷惘墨香完成签到 ,获得积分10
13秒前
13秒前
Cynthia发布了新的文献求助30
13秒前
共享精神应助shenyanlei采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762