Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis

人工智能 计算机科学 卷积神经网络 机器学习 鉴别器 深度学习 集成学习 模式识别(心理学) 电信 探测器
作者
Wenjie Kang,Lan Lin,Baiwen Zhang,Xiaoqi Shen,Shuicai Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104678-104678 被引量:89
标识
DOI:10.1016/j.compbiomed.2021.104678
摘要

Alzheimer's Disease (AD) is a chronic neurodegenerative disease without effective medications or supplemental treatments. Thus, predicting AD progression is crucial for clinical practice and medical research. Due to limited neuroimaging data, two-dimensional convolutional neural networks (2D CNNs) have been commonly adopted to differentiate among cognitively normal subjects (CN), people with mild cognitive impairment (MCI), and AD patients. Therefore, this paper proposes an ensemble learning (EL) architecture based on 2D CNNs, using a multi-model and multi-slice ensemble. First, the top 11 coronal slices of grey matter density maps for AD versus CN classifications were selected. Second, the discriminator of a generative adversarial network, VGG16, and ResNet50 were trained with the selected slices, and the majority voting scheme was used to merge the multi-slice decisions of each model. Afterwards, those three classifiers were used to construct an ensemble model. Multi-slice ensemble learning was designed to obtain spatial features, while multi-model integration reduced the prediction error rate. Finally, transfer learning was used in domain adaptation to refine those CNNs, moving them from working solely with AD versus CN classifications to being applicable to other tasks. This ensemble approach achieved accuracy values of 90.36%, 77.19%, and 72.36% when classifying AD versus CN, AD versus MCI, and MCI versus CN, respectively. Compared with other state-of-the-art 2D studies, the proposed approach provides an effective, accurate, automatic diagnosis along the AD continuum. This technique may enhance AD diagnostics when the sample size is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的电话完成签到 ,获得积分10
1秒前
四年毕业的博士完成签到,获得积分20
1秒前
3秒前
4秒前
zjunzero发布了新的文献求助10
5秒前
5秒前
茗溪完成签到 ,获得积分10
5秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
5秒前
等待的花生完成签到,获得积分10
6秒前
穆萝完成签到,获得积分10
7秒前
Marine完成签到,获得积分10
7秒前
7秒前
白嫖论文发布了新的文献求助10
7秒前
8秒前
8秒前
张小北发布了新的文献求助20
8秒前
Hello应助JINY采纳,获得10
9秒前
ironsilica发布了新的文献求助10
11秒前
Gan发布了新的文献求助10
11秒前
wenjingluo完成签到 ,获得积分10
13秒前
望都完成签到,获得积分10
13秒前
不配.应助123321采纳,获得10
14秒前
15秒前
16秒前
我就是我完成签到,获得积分10
16秒前
爆米花应助RenYigmin采纳,获得10
18秒前
Steven发布了新的文献求助10
18秒前
YKXYXB完成签到,获得积分10
18秒前
DYLAN_ZZ完成签到,获得积分10
18秒前
研友_ZGjDYn发布了新的文献求助10
18秒前
刻苦期待完成签到,获得积分10
19秒前
思源应助Zing采纳,获得10
20秒前
夏夜黎梦完成签到,获得积分10
20秒前
快乐保温杯完成签到 ,获得积分10
21秒前
清秀笑晴发布了新的文献求助30
21秒前
方冷荷完成签到 ,获得积分10
23秒前
24秒前
李健的小迷弟应助夜见枫采纳,获得10
25秒前
你哈完成签到 ,获得积分10
26秒前
在水一方应助mfy采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845