Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis

人工智能 计算机科学 卷积神经网络 机器学习 鉴别器 深度学习 集成学习 模式识别(心理学) 电信 探测器
作者
Wenjie Kang,Lan Lin,Baiwen Zhang,Xiaoqi Shen,Shuicai Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104678-104678 被引量:89
标识
DOI:10.1016/j.compbiomed.2021.104678
摘要

Alzheimer's Disease (AD) is a chronic neurodegenerative disease without effective medications or supplemental treatments. Thus, predicting AD progression is crucial for clinical practice and medical research. Due to limited neuroimaging data, two-dimensional convolutional neural networks (2D CNNs) have been commonly adopted to differentiate among cognitively normal subjects (CN), people with mild cognitive impairment (MCI), and AD patients. Therefore, this paper proposes an ensemble learning (EL) architecture based on 2D CNNs, using a multi-model and multi-slice ensemble. First, the top 11 coronal slices of grey matter density maps for AD versus CN classifications were selected. Second, the discriminator of a generative adversarial network, VGG16, and ResNet50 were trained with the selected slices, and the majority voting scheme was used to merge the multi-slice decisions of each model. Afterwards, those three classifiers were used to construct an ensemble model. Multi-slice ensemble learning was designed to obtain spatial features, while multi-model integration reduced the prediction error rate. Finally, transfer learning was used in domain adaptation to refine those CNNs, moving them from working solely with AD versus CN classifications to being applicable to other tasks. This ensemble approach achieved accuracy values of 90.36%, 77.19%, and 72.36% when classifying AD versus CN, AD versus MCI, and MCI versus CN, respectively. Compared with other state-of-the-art 2D studies, the proposed approach provides an effective, accurate, automatic diagnosis along the AD continuum. This technique may enhance AD diagnostics when the sample size is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
吨吨完成签到,获得积分10
刚刚
圣甲虫完成签到 ,获得积分10
刚刚
大明星完成签到,获得积分10
刚刚
zhuo发布了新的文献求助10
刚刚
刚刚
Felix完成签到,获得积分10
1秒前
universe完成签到 ,获得积分10
1秒前
HXY完成签到,获得积分20
1秒前
wxj完成签到,获得积分10
1秒前
打打应助赣南橙采纳,获得10
2秒前
teamguichu发布了新的文献求助10
2秒前
StonesKing发布了新的文献求助10
3秒前
绘海完成签到,获得积分10
3秒前
3秒前
3秒前
universe关注了科研通微信公众号
3秒前
Espoir发布了新的文献求助10
4秒前
无奈手套完成签到,获得积分10
4秒前
压力小子完成签到,获得积分10
4秒前
5秒前
lw完成签到,获得积分20
5秒前
大模型应助kelly9110采纳,获得10
5秒前
yincheng完成签到,获得积分10
5秒前
完美世界应助帅气的宽采纳,获得10
6秒前
6秒前
田様应助蛋炒饭不加蛋采纳,获得10
6秒前
meetland完成签到 ,获得积分10
7秒前
maryin发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
honey完成签到,获得积分10
10秒前
11秒前
无花果应助teamguichu采纳,获得10
11秒前
11秒前
12秒前
上官若男应助tomato采纳,获得10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911514
求助须知:如何正确求助?哪些是违规求助? 4186972
关于积分的说明 13002173
捐赠科研通 3954804
什么是DOI,文献DOI怎么找? 2168480
邀请新用户注册赠送积分活动 1186929
关于科研通互助平台的介绍 1094247