Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud

分割 点云 基本事实 人工智能 开枪 点(几何) 精确性和召回率 生物 苗木 计算机科学 模式识别(心理学) 植物 数学 几何学
作者
Miao Teng,Chao Zhu,Tongyu Xu,Tao Yang,Na Li,Yuncheng Zhou,Hanbin Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:187: 106310-106310 被引量:55
标识
DOI:10.1016/j.compag.2021.106310
摘要

The application of 3D point cloud data in maize research is increasingly extensive. Currently, there are many approaches to acquiring three-dimensional (3D) point clouds of maize plants. However, automatic stem-leaf segmentation of maize shoots from 3D point clouds remains challenging, especially for new emerging leaves that are wrapped very closely together during the seedling stage. To address this issue, we propose an automatic segmentation method consisting of three steps: skeleton extraction, coarse segmentation based on the skeleton, and fine segmentation based on stem-leaf classification. The segmentation method was tested on 75 maize seedlings and compared with the manually obtained ground truth. The mean precision, mean recall, mean micro F1 score, and mean overall accuracy of our segmentation algorithm were 0.944, 0.956, 0.950 and 0.953, respectively. Using the segmentation results, two applications were also developed in this study, namely, phenotypic trait extraction and skeleton optimization. Six phenotypic parameters, namely, plant height, crown diameter, stem height and diameter, leaf width, and length, can be accurately and automatically measured. Furthermore, the values of R2 for the six phenotypic traits were all above 0.92. We also propose a skeleton optimization method that can extract the skeletons of the upper leaves completely and clearly. The results indicate that the proposed algorithm can automatically and precisely segment not only the fully expanded leaves but also the new leaves wrapped closely together. The proposed approach can play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, and dynamic growth animation. We released the source code and test data at the web site https://github.com/syau-miao/seg4maize.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abcc1234完成签到,获得积分10
刚刚
doewi完成签到,获得积分10
1秒前
1秒前
充电宝应助石会发采纳,获得10
1秒前
1秒前
yw完成签到,获得积分10
1秒前
feilong发布了新的文献求助10
2秒前
上官若男应助Rue采纳,获得10
2秒前
虚幻元芹发布了新的文献求助10
2秒前
lucifer应助翔翔超人采纳,获得10
3秒前
3秒前
xiaofengche完成签到,获得积分10
4秒前
BZPL发布了新的文献求助10
4秒前
jiangyu_an完成签到,获得积分10
4秒前
平淡如天发布了新的文献求助10
4秒前
4秒前
4秒前
石时时完成签到,获得积分10
5秒前
李健的小迷弟应助wenjing采纳,获得10
6秒前
7秒前
糕糕发布了新的文献求助10
7秒前
Owen应助jess采纳,获得10
7秒前
learnerZ_2023完成签到,获得积分10
8秒前
彭于晏应助hohn采纳,获得10
8秒前
领导范儿应助Mong那粒沙采纳,获得10
8秒前
8秒前
8秒前
8秒前
haha发布了新的文献求助10
9秒前
充电宝应助虚幻元芹采纳,获得10
9秒前
ZYH完成签到,获得积分10
9秒前
9秒前
10秒前
活泼沛菡完成签到,获得积分20
10秒前
advance完成签到,获得积分10
10秒前
10秒前
传奇3应助永恒采纳,获得10
10秒前
科研通AI5应助UNIQ85采纳,获得10
10秒前
眭超阳完成签到 ,获得积分10
11秒前
king_creole完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560552
求助须知:如何正确求助?哪些是违规求助? 3986658
关于积分的说明 12343469
捐赠科研通 3657426
什么是DOI,文献DOI怎么找? 2014919
邀请新用户注册赠送积分活动 1049681
科研通“疑难数据库(出版商)”最低求助积分说明 937867