Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud

分割 点云 基本事实 人工智能 开枪 点(几何) 精确性和召回率 生物 苗木 计算机科学 模式识别(心理学) 植物 数学 几何学
作者
Miao Teng,Chao Zhu,Tongyu Xu,Tao Yang,Na Li,Yuncheng Zhou,Hanbin Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106310-106310 被引量:78
标识
DOI:10.1016/j.compag.2021.106310
摘要

The application of 3D point cloud data in maize research is increasingly extensive. Currently, there are many approaches to acquiring three-dimensional (3D) point clouds of maize plants. However, automatic stem-leaf segmentation of maize shoots from 3D point clouds remains challenging, especially for new emerging leaves that are wrapped very closely together during the seedling stage. To address this issue, we propose an automatic segmentation method consisting of three steps: skeleton extraction, coarse segmentation based on the skeleton, and fine segmentation based on stem-leaf classification. The segmentation method was tested on 75 maize seedlings and compared with the manually obtained ground truth. The mean precision, mean recall, mean micro F1 score, and mean overall accuracy of our segmentation algorithm were 0.944, 0.956, 0.950 and 0.953, respectively. Using the segmentation results, two applications were also developed in this study, namely, phenotypic trait extraction and skeleton optimization. Six phenotypic parameters, namely, plant height, crown diameter, stem height and diameter, leaf width, and length, can be accurately and automatically measured. Furthermore, the values of R2 for the six phenotypic traits were all above 0.92. We also propose a skeleton optimization method that can extract the skeletons of the upper leaves completely and clearly. The results indicate that the proposed algorithm can automatically and precisely segment not only the fully expanded leaves but also the new leaves wrapped closely together. The proposed approach can play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, and dynamic growth animation. We released the source code and test data at the web site https://github.com/syau-miao/seg4maize.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助启程牛牛采纳,获得10
刚刚
马小燕完成签到,获得积分10
1秒前
1秒前
英吉利25发布了新的文献求助10
2秒前
zhangzhang05发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
科研小狗完成签到,获得积分10
5秒前
xie发布了新的文献求助10
5秒前
8秒前
8秒前
8秒前
8秒前
9秒前
ding应助佳哥闯天下采纳,获得10
10秒前
不安愚志发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
淡然寄琴完成签到,获得积分10
11秒前
小二郎应助pianoboy采纳,获得10
12秒前
HHYE发布了新的文献求助10
12秒前
yangpengbo发布了新的文献求助10
13秒前
13秒前
小蘑菇应助姚哈哈采纳,获得10
13秒前
自然的霸完成签到,获得积分10
14秒前
乐乐应助xie采纳,获得10
14秒前
gapsong完成签到,获得积分10
14秒前
14秒前
15秒前
在水一方应助zhangzhang05采纳,获得10
15秒前
yu完成签到,获得积分10
16秒前
九三发布了新的文献求助10
16秒前
16秒前
铁头发布了新的文献求助10
16秒前
17秒前
淡然寄琴发布了新的文献求助10
17秒前
17秒前
启程牛牛发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420332
求助须知:如何正确求助?哪些是违规求助? 4535408
关于积分的说明 14150160
捐赠科研通 4452496
什么是DOI,文献DOI怎么找? 2442264
邀请新用户注册赠送积分活动 1433689
关于科研通互助平台的介绍 1410945