清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud

分割 点云 基本事实 人工智能 开枪 点(几何) 精确性和召回率 生物 苗木 计算机科学 模式识别(心理学) 植物 数学 几何学
作者
Miao Teng,Chao Zhu,Tongyu Xu,Tao Yang,Na Li,Yuncheng Zhou,Hanbin Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106310-106310 被引量:78
标识
DOI:10.1016/j.compag.2021.106310
摘要

The application of 3D point cloud data in maize research is increasingly extensive. Currently, there are many approaches to acquiring three-dimensional (3D) point clouds of maize plants. However, automatic stem-leaf segmentation of maize shoots from 3D point clouds remains challenging, especially for new emerging leaves that are wrapped very closely together during the seedling stage. To address this issue, we propose an automatic segmentation method consisting of three steps: skeleton extraction, coarse segmentation based on the skeleton, and fine segmentation based on stem-leaf classification. The segmentation method was tested on 75 maize seedlings and compared with the manually obtained ground truth. The mean precision, mean recall, mean micro F1 score, and mean overall accuracy of our segmentation algorithm were 0.944, 0.956, 0.950 and 0.953, respectively. Using the segmentation results, two applications were also developed in this study, namely, phenotypic trait extraction and skeleton optimization. Six phenotypic parameters, namely, plant height, crown diameter, stem height and diameter, leaf width, and length, can be accurately and automatically measured. Furthermore, the values of R2 for the six phenotypic traits were all above 0.92. We also propose a skeleton optimization method that can extract the skeletons of the upper leaves completely and clearly. The results indicate that the proposed algorithm can automatically and precisely segment not only the fully expanded leaves but also the new leaves wrapped closely together. The proposed approach can play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, and dynamic growth animation. We released the source code and test data at the web site https://github.com/syau-miao/seg4maize.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助fuyaoye2010采纳,获得10
1秒前
内向的绿发布了新的文献求助10
19秒前
20秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
25秒前
量子星尘发布了新的文献求助10
32秒前
大个应助内向的绿采纳,获得10
42秒前
打打应助Hancen采纳,获得10
46秒前
NexusExplorer应助Z先生采纳,获得10
58秒前
1分钟前
Z先生发布了新的文献求助10
1分钟前
Z先生完成签到,获得积分20
1分钟前
1分钟前
内向的绿发布了新的文献求助10
1分钟前
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
科研通AI6.1应助内向的绿采纳,获得10
2分钟前
不如看海完成签到 ,获得积分10
2分钟前
2分钟前
小珂完成签到 ,获得积分10
2分钟前
2分钟前
内向的绿发布了新的文献求助10
2分钟前
辣小扬完成签到 ,获得积分10
3分钟前
科研通AI6.1应助内向的绿采纳,获得10
3分钟前
3分钟前
Hancen发布了新的文献求助10
3分钟前
Hancen完成签到,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
4分钟前
内向的绿发布了新的文献求助10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6.1应助内向的绿采纳,获得10
4分钟前
4分钟前
大胆的碧菡完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773003
求助须知:如何正确求助?哪些是违规求助? 5605278
关于积分的说明 15430310
捐赠科研通 4905739
什么是DOI,文献DOI怎么找? 2639693
邀请新用户注册赠送积分活动 1587589
关于科研通互助平台的介绍 1542554