Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud

分割 点云 基本事实 人工智能 开枪 点(几何) 精确性和召回率 生物 苗木 计算机科学 模式识别(心理学) 植物 数学 几何学
作者
Miao Teng,Chao Zhu,Tongyu Xu,Tao Yang,Na Li,Yuncheng Zhou,Hanbin Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106310-106310 被引量:78
标识
DOI:10.1016/j.compag.2021.106310
摘要

The application of 3D point cloud data in maize research is increasingly extensive. Currently, there are many approaches to acquiring three-dimensional (3D) point clouds of maize plants. However, automatic stem-leaf segmentation of maize shoots from 3D point clouds remains challenging, especially for new emerging leaves that are wrapped very closely together during the seedling stage. To address this issue, we propose an automatic segmentation method consisting of three steps: skeleton extraction, coarse segmentation based on the skeleton, and fine segmentation based on stem-leaf classification. The segmentation method was tested on 75 maize seedlings and compared with the manually obtained ground truth. The mean precision, mean recall, mean micro F1 score, and mean overall accuracy of our segmentation algorithm were 0.944, 0.956, 0.950 and 0.953, respectively. Using the segmentation results, two applications were also developed in this study, namely, phenotypic trait extraction and skeleton optimization. Six phenotypic parameters, namely, plant height, crown diameter, stem height and diameter, leaf width, and length, can be accurately and automatically measured. Furthermore, the values of R2 for the six phenotypic traits were all above 0.92. We also propose a skeleton optimization method that can extract the skeletons of the upper leaves completely and clearly. The results indicate that the proposed algorithm can automatically and precisely segment not only the fully expanded leaves but also the new leaves wrapped closely together. The proposed approach can play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, and dynamic growth animation. We released the source code and test data at the web site https://github.com/syau-miao/seg4maize.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嗷嗷待哺狼完成签到,获得积分10
刚刚
子车茗应助ssss采纳,获得20
刚刚
1秒前
呱嚓发布了新的文献求助10
1秒前
pps发布了新的文献求助10
1秒前
房房不慌完成签到 ,获得积分10
1秒前
amberzyc应助科研小白采纳,获得10
1秒前
hutian完成签到,获得积分10
2秒前
星辰大海应助飞翔荷兰人采纳,获得10
2秒前
冷艳的火龙果完成签到,获得积分10
2秒前
cyndi完成签到,获得积分10
2秒前
阿宅完成签到,获得积分10
3秒前
hiadg完成签到,获得积分10
4秒前
着急的黄豆完成签到,获得积分10
4秒前
王兽医完成签到,获得积分10
4秒前
海石酸辣完成签到 ,获得积分10
4秒前
外向渊思发布了新的文献求助10
5秒前
yyy完成签到,获得积分10
5秒前
king_creole完成签到,获得积分10
5秒前
jerry完成签到,获得积分10
5秒前
5秒前
6秒前
小熊完成签到,获得积分10
6秒前
卢振杰完成签到,获得积分20
6秒前
科研澄澄完成签到,获得积分10
6秒前
6秒前
H6关闭了H6文献求助
6秒前
haoooooooooooooo应助清i晨采纳,获得10
6秒前
yunna_ning完成签到,获得积分10
7秒前
7秒前
英勇真完成签到,获得积分10
7秒前
7秒前
sumugeng完成签到,获得积分10
7秒前
刘云发布了新的文献求助10
8秒前
南拥夏栀完成签到,获得积分10
8秒前
Xwu完成签到,获得积分10
8秒前
ssss完成签到,获得积分10
8秒前
大模型应助不吃番茄采纳,获得10
8秒前
上官若男应助金银花采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698957
求助须知:如何正确求助?哪些是违规求助? 5127856
关于积分的说明 15223496
捐赠科研通 4853894
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555882
关于科研通互助平台的介绍 1514222