Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud

分割 点云 基本事实 人工智能 开枪 点(几何) 精确性和召回率 生物 苗木 计算机科学 模式识别(心理学) 植物 数学 几何学
作者
Miao Teng,Chao Zhu,Tongyu Xu,Tao Yang,Na Li,Yuncheng Zhou,Hanbin Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106310-106310 被引量:78
标识
DOI:10.1016/j.compag.2021.106310
摘要

The application of 3D point cloud data in maize research is increasingly extensive. Currently, there are many approaches to acquiring three-dimensional (3D) point clouds of maize plants. However, automatic stem-leaf segmentation of maize shoots from 3D point clouds remains challenging, especially for new emerging leaves that are wrapped very closely together during the seedling stage. To address this issue, we propose an automatic segmentation method consisting of three steps: skeleton extraction, coarse segmentation based on the skeleton, and fine segmentation based on stem-leaf classification. The segmentation method was tested on 75 maize seedlings and compared with the manually obtained ground truth. The mean precision, mean recall, mean micro F1 score, and mean overall accuracy of our segmentation algorithm were 0.944, 0.956, 0.950 and 0.953, respectively. Using the segmentation results, two applications were also developed in this study, namely, phenotypic trait extraction and skeleton optimization. Six phenotypic parameters, namely, plant height, crown diameter, stem height and diameter, leaf width, and length, can be accurately and automatically measured. Furthermore, the values of R2 for the six phenotypic traits were all above 0.92. We also propose a skeleton optimization method that can extract the skeletons of the upper leaves completely and clearly. The results indicate that the proposed algorithm can automatically and precisely segment not only the fully expanded leaves but also the new leaves wrapped closely together. The proposed approach can play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, and dynamic growth animation. We released the source code and test data at the web site https://github.com/syau-miao/seg4maize.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
从容的小土豆完成签到,获得积分10
3秒前
无花果应助柚子采纳,获得20
4秒前
regina完成签到,获得积分10
4秒前
4秒前
杨小鸿发布了新的文献求助10
4秒前
6秒前
我是老大应助傻傻的雅寒采纳,获得10
6秒前
森花完成签到,获得积分10
6秒前
子訡发布了新的文献求助10
7秒前
7秒前
CH完成签到,获得积分10
7秒前
李兴完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
kzf丶bryant发布了新的文献求助10
10秒前
vanilla完成签到,获得积分10
11秒前
11秒前
Chenly完成签到,获得积分10
13秒前
桐桐应助柚子采纳,获得10
14秒前
16秒前
17秒前
刘濮源发布了新的文献求助10
22秒前
Hello应助杨小鸿采纳,获得10
22秒前
想发好文章完成签到,获得积分10
23秒前
科研通AI6.1应助柚子采纳,获得10
24秒前
25秒前
27秒前
听闻韬声依旧完成签到 ,获得积分10
30秒前
刘振坤完成签到,获得积分10
31秒前
32秒前
32秒前
凶狠的半山完成签到,获得积分10
33秒前
JRG完成签到,获得积分20
33秒前
瞬间完成签到,获得积分10
34秒前
34秒前
36秒前
决明子完成签到 ,获得积分10
36秒前
希望天下0贩的0应助柚子采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978