An automatic system for pest recognition and forecasting

计算机科学 人工智能 图像处理 样品(材料) 统计 有害生物分析 病虫害综合治理 农业工程 数学 图像(数学) 生态学 生物 工程类 化学 植物 色谱法
作者
Rujing Wang,Rui Li,Tianjiao Chen,Jie Zhang,Chengjun Xie,Kun Qiu,Peng Chen,Jianming Du,Hongbo Chen,FangRong Shao,Haiying Hu,Haiyun Liu
出处
期刊:Pest Management Science [Wiley]
卷期号:78 (2): 711-721 被引量:10
标识
DOI:10.1002/ps.6684
摘要

Pests cause significant damage to agricultural crops and reduce crop yields. Use of manual methods of pest forecasting for integrated pest management is labor-intensive and time-consuming. Here, we present an automatic system for monitoring pests in large fields, with the aim of replacing manual forecasting. The system comprises an automatic detection and counting system and a human-computer data statistical fitting system. Image data sets of the target pests from large fields are first input into the system. The number of pests in the image is then counted both manually and using the automatic system. Finally, a mapping relationship between counts obtained using the automated system and by agricultural experts is established using the statistical fitting system.Trends in the pest-count curves produced using the manual and automated counting methods were very similar. To sample the number of pests for manual statistics, plants were shaken to transfer the pests from the plant to a plate. Hence, pests hiding within plant crevices were also sampled and included in the count, whereas the automatic method counted only the pests visible in the images. Therefore, the computer index threshold was much lower than the manual index threshold. However, the proposed system correctly reflected trends in pest numbers obtained using computer vision.The experimental results demonstrate that our automatic pest-monitoring system can generate pest grades and can replace manual forecasting methods in large fields. © 2021 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助竹音采纳,获得10
1秒前
343727237@qq.com完成签到,获得积分10
1秒前
集力申完成签到,获得积分10
1秒前
大火烧了毛毛虫完成签到,获得积分10
2秒前
明亮访烟发布了新的文献求助10
3秒前
3秒前
4秒前
wll完成签到,获得积分10
4秒前
稳重驳发布了新的文献求助10
5秒前
稳重的鱼发布了新的文献求助10
6秒前
6秒前
6秒前
文献大大完成签到,获得积分10
7秒前
丘比特应助要减肥靳采纳,获得10
8秒前
坐等时光看轻自己完成签到,获得积分10
8秒前
派大星完成签到,获得积分10
8秒前
8秒前
Jasper应助完美的幼珊采纳,获得10
9秒前
康康完成签到,获得积分10
9秒前
9秒前
小狗是天使发布了新的文献求助100
9秒前
Ff完成签到,获得积分10
10秒前
打打应助wll采纳,获得10
10秒前
伯。完成签到,获得积分10
10秒前
孔雀翎发布了新的文献求助10
11秒前
12秒前
筱雪芲完成签到,获得积分10
12秒前
hql关注了科研通微信公众号
12秒前
Shine发布了新的文献求助10
12秒前
13秒前
烂漫的灰狼完成签到,获得积分10
14秒前
阿東完成签到 ,获得积分10
14秒前
江苏吴世勋完成签到,获得积分10
14秒前
14秒前
zz完成签到,获得积分10
14秒前
哎呦完成签到,获得积分10
15秒前
dd完成签到,获得积分10
15秒前
16秒前
Miller应助左一采纳,获得20
16秒前
17秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587