In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries

材料科学 分离器(采油) 电解质 静电纺丝 涂层 化学工程 热稳定性 储能 纳米技术 电极 复合材料 化学 聚合物 热力学 物理 工程类 量子力学 物理化学 功率(物理)
作者
Leixin Deng,Chenyang Cai,Yangze Huang,Yu Fu
出处
期刊:Microporous and Mesoporous Materials [Elsevier]
卷期号:329: 111544-111544 被引量:16
标识
DOI:10.1016/j.micromeso.2021.111544
摘要

Lithium-ion batteries have been regarded as the most potential energy storage system due to their high energy density and theoretical capacity. However, conventional separators suffer from low electrolyte absorption, poor thermal and cycling stability, short circuits caused by dendrite growth. Herein, an effective approach was proposed to explore MOFs-based 3D-channeled separator via in-situ growth of ZIF-8 coating, which could significantly improve cycle stability and inhibit dendrite growth. Specifically, PLA membrane with 3D-channels was prepared by directional electrospinning and dopamine-induced assembling of MOFs in-situ growth onto the specified surface. By manipulating solvents, the desirable robustness of MOFs coatings could be accomplished through morphological assembly. Based on MOFs-architectured coating and microporosity, the excellent thermal stability (no change in size at 120 °C) and superior electrolyte uptake ability (290%) were finally obtained for the biobased separator. The assembled Li-ion battery exhibited ultrahigh cycle stability (capacity retention rate, 98.78% after 200 cycles at 1C rate) and preferable resistance to dendritic penetration, higher than those of the publicly reported. The excellent performance was attributed to the multiple 3D-channeled pathways for Li+ provided by MOFs and coating morphology. This study shows the potential for the development of next generation energy storage devices with excellent cycle stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬瓜熊完成签到,获得积分10
1秒前
cc完成签到 ,获得积分10
1秒前
TYRsunny发布了新的文献求助10
2秒前
2秒前
隐形曼青应助CH采纳,获得10
3秒前
ljq发布了新的文献求助10
4秒前
畅快山兰发布了新的文献求助10
5秒前
几欢完成签到,获得积分20
5秒前
Xuan完成签到,获得积分10
5秒前
blink_gmx完成签到,获得积分10
7秒前
Y_Y完成签到,获得积分10
8秒前
格格巫发布了新的文献求助10
9秒前
166发布了新的文献求助10
9秒前
你好给你好的求助进行了留言
10秒前
10秒前
lin完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
迷失沉寂发布了新的文献求助10
11秒前
英俊的铭应助yu采纳,获得10
12秒前
YWK完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助谨慎建辉采纳,获得10
13秒前
14秒前
刘子田发布了新的文献求助10
14秒前
很靠近海发布了新的文献求助10
16秒前
CH发布了新的文献求助10
17秒前
小瓦片完成签到,获得积分10
17秒前
噜噜噜发布了新的文献求助10
19秒前
科研通AI6应助许子健采纳,获得10
21秒前
21秒前
21秒前
下文献应助大白熊采纳,获得10
22秒前
隐形曼青应助tt采纳,获得10
23秒前
23秒前
24秒前
奇异果果完成签到 ,获得积分10
24秒前
25秒前
饺子爱看文献哦完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288796
求助须知:如何正确求助?哪些是违规求助? 4440579
关于积分的说明 13825032
捐赠科研通 4322857
什么是DOI,文献DOI怎么找? 2372785
邀请新用户注册赠送积分活动 1368276
关于科研通互助平台的介绍 1332168