In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries

材料科学 分离器(采油) 电解质 静电纺丝 涂层 化学工程 热稳定性 储能 纳米技术 电极 复合材料 化学 聚合物 热力学 物理 工程类 量子力学 物理化学 功率(物理)
作者
Leixin Deng,Chenyang Cai,Yuanyuan Huang,Yu Fu
出处
期刊:Microporous and Mesoporous Materials [Elsevier]
卷期号:329: 111544-111544 被引量:7
标识
DOI:10.1016/j.micromeso.2021.111544
摘要

Lithium-ion batteries have been regarded as the most potential energy storage system due to their high energy density and theoretical capacity. However, conventional separators suffer from low electrolyte absorption, poor thermal and cycling stability, short circuits caused by dendrite growth. Herein, an effective approach was proposed to explore MOFs-based 3D-channeled separator via in-situ growth of ZIF-8 coating, which could significantly improve cycle stability and inhibit dendrite growth. Specifically, PLA membrane with 3D-channels was prepared by directional electrospinning and dopamine-induced assembling of MOFs in-situ growth onto the specified surface. By manipulating solvents, the desirable robustness of MOFs coatings could be accomplished through morphological assembly. Based on MOFs-architectured coating and microporosity, the excellent thermal stability (no change in size at 120 °C) and superior electrolyte uptake ability (290%) were finally obtained for the biobased separator. The assembled Li-ion battery exhibited ultrahigh cycle stability (capacity retention rate, 98.78% after 200 cycles at 1C rate) and preferable resistance to dendritic penetration, higher than those of the publicly reported. The excellent performance was attributed to the multiple 3D-channeled pathways for Li+ provided by MOFs and coating morphology. This study shows the potential for the development of next generation energy storage devices with excellent cycle stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
elle完成签到,获得积分10
1秒前
2秒前
李爱国应助小鱼采纳,获得10
3秒前
3秒前
4秒前
酒洌发布了新的文献求助10
4秒前
5秒前
枫华完成签到,获得积分10
5秒前
6秒前
领导范儿应助tll采纳,获得10
6秒前
深情安青应助kk采纳,获得10
6秒前
爱听歌若云完成签到,获得积分20
7秒前
ylh发布了新的文献求助10
7秒前
7秒前
7秒前
baoleijia发布了新的文献求助30
8秒前
枫华发布了新的文献求助10
8秒前
shuxue完成签到,获得积分10
8秒前
Hello应助LHD采纳,获得10
9秒前
烁果累累完成签到 ,获得积分10
9秒前
10秒前
jeantao发布了新的文献求助10
10秒前
李爱国应助刻苦丝袜采纳,获得10
10秒前
11秒前
小蓝完成签到,获得积分10
11秒前
刘斌发布了新的文献求助10
11秒前
11秒前
jerome发布了新的文献求助10
12秒前
黎初发布了新的文献求助10
12秒前
13秒前
qucheng完成签到 ,获得积分10
14秒前
zhiyuan完成签到,获得积分10
14秒前
14秒前
Lee完成签到,获得积分10
15秒前
15秒前
15秒前
医研丁真完成签到 ,获得积分10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825