In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries

材料科学 分离器(采油) 电解质 静电纺丝 涂层 化学工程 热稳定性 储能 纳米技术 电极 复合材料 化学 聚合物 热力学 物理 工程类 量子力学 物理化学 功率(物理)
作者
Leixin Deng,Chenyang Cai,Yuanyuan Huang,Yu Fu
出处
期刊:Microporous and Mesoporous Materials [Elsevier BV]
卷期号:329: 111544-111544 被引量:7
标识
DOI:10.1016/j.micromeso.2021.111544
摘要

Lithium-ion batteries have been regarded as the most potential energy storage system due to their high energy density and theoretical capacity. However, conventional separators suffer from low electrolyte absorption, poor thermal and cycling stability, short circuits caused by dendrite growth. Herein, an effective approach was proposed to explore MOFs-based 3D-channeled separator via in-situ growth of ZIF-8 coating, which could significantly improve cycle stability and inhibit dendrite growth. Specifically, PLA membrane with 3D-channels was prepared by directional electrospinning and dopamine-induced assembling of MOFs in-situ growth onto the specified surface. By manipulating solvents, the desirable robustness of MOFs coatings could be accomplished through morphological assembly. Based on MOFs-architectured coating and microporosity, the excellent thermal stability (no change in size at 120 °C) and superior electrolyte uptake ability (290%) were finally obtained for the biobased separator. The assembled Li-ion battery exhibited ultrahigh cycle stability (capacity retention rate, 98.78% after 200 cycles at 1C rate) and preferable resistance to dendritic penetration, higher than those of the publicly reported. The excellent performance was attributed to the multiple 3D-channeled pathways for Li+ provided by MOFs and coating morphology. This study shows the potential for the development of next generation energy storage devices with excellent cycle stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助透视眼采纳,获得10
刚刚
消摇发布了新的文献求助10
刚刚
CipherSage应助小野猫采纳,获得30
刚刚
科研通AI6应助现代友桃采纳,获得10
刚刚
赵远航发布了新的文献求助10
1秒前
星辰大海应助椰子采纳,获得10
1秒前
2秒前
笛恰儿发布了新的文献求助20
2秒前
忧郁的雨发布了新的文献求助10
2秒前
3秒前
3秒前
SciGPT应助s615采纳,获得10
3秒前
3秒前
4秒前
4秒前
Alger完成签到,获得积分10
4秒前
1111完成签到,获得积分10
4秒前
5秒前
酷波er应助亦玉采纳,获得10
6秒前
6秒前
碧玉墨绿发布了新的文献求助10
7秒前
靓丽琳发布了新的文献求助10
7秒前
小呆发布了新的文献求助10
9秒前
勤奋映梦完成签到,获得积分10
9秒前
9秒前
9秒前
忧郁的雨完成签到,获得积分20
9秒前
9秒前
liyanfeng完成签到,获得积分10
10秒前
MADAO发布了新的文献求助200
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
wsy发布了新的文献求助10
12秒前
12秒前
12秒前
顺利的琳发布了新的文献求助60
12秒前
不与旋覆完成签到,获得积分10
12秒前
初心完成签到 ,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951300
求助须知:如何正确求助?哪些是违规求助? 4213988
关于积分的说明 13107085
捐赠科研通 3995738
什么是DOI,文献DOI怎么找? 2187102
邀请新用户注册赠送积分活动 1202366
关于科研通互助平台的介绍 1115447