Surface chemistry of the ladybird beetle adhesive foot fluid across various substrates

胶粘剂 粘附 纳米技术 化学 力谱学 分子 化学物理 材料科学 生物物理学 化学工程 有机化学 原子力显微镜 图层(电子) 生物 工程类
作者
J. Elliott Fowler,Johannes Franz,Thaddeus W. Golbek,Tobias Weidner,Elena V. Gorb,Stanislav N. Gorb,Joe E. Baio
出处
期刊:Biointerphases [American Institute of Physics]
卷期号:16 (3) 被引量:4
标识
DOI:10.1116/6.0001006
摘要

Nature has coevolved highly adaptive and reliable bioadhesives across a multitude of animal species. Much attention has been paid in recent years to selectively mimic these adhesives for the improvement of a variety of technologies. However, very few of the chemical mechanisms that drive these natural adhesives are well understood. Many insects combine hairy feet with a secreted adhesive fluid, allowing for adhesion to considerably rough and slippery surfaces. Insect adhesive fluids have evolved highly specific compositions which are consistent across most surfaces and optimize both foot adhesion and release in natural environments. For example, beetles are thought to have adhesive fluids made up of a complex molecular mixture containing both hydrophobic and hydrophilic parts. We hypothesize that this causes the adhesive interface to be dynamic, with molecules in the fluid selectively organizing and ordering at surfaces with complimentary hydrophobicity to maximize adhesion. In this study, we examine the adhesive fluid of a seven-spotted ladybird beetle with a surface-sensitive analytical technique, sum frequency generation spectroscopy, as the fluid interacts with three substrates of varied wettabilities. The resulting spectra present no evidence of unique molecular environments between hydrophilic and hydrophobic surfaces but exhibit significant differences in the ordering of hydrocarbons. This change in surface interactions across different substrates correlates well with traction forces measured from beetles interacting with substrates of increasing hydrophobicities. We conclude that insect adhesion is dependent upon a dynamic molecular-interfacial response to an environmental surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助火星上的听云采纳,获得10
刚刚
合适的人类完成签到,获得积分20
1秒前
鱼与完成签到,获得积分10
2秒前
爱爱发布了新的文献求助10
3秒前
4秒前
4秒前
科研冰山完成签到,获得积分10
4秒前
5秒前
Zoeyz完成签到 ,获得积分10
7秒前
8秒前
sanmu完成签到,获得积分10
8秒前
yy完成签到,获得积分10
10秒前
彳亍发布了新的文献求助10
11秒前
夜微醉完成签到,获得积分10
13秒前
13秒前
超级老三发布了新的文献求助10
14秒前
taozi完成签到,获得积分10
15秒前
THEEVE完成签到,获得积分10
16秒前
aniver完成签到 ,获得积分10
16秒前
英姑应助辻辰采纳,获得10
16秒前
17秒前
哲999完成签到,获得积分10
17秒前
夜微醉发布了新的文献求助10
18秒前
18秒前
袁相宜完成签到,获得积分10
18秒前
西安鱼完成签到,获得积分10
19秒前
深情安青应助淡然篮球采纳,获得10
20秒前
21秒前
老王完成签到,获得积分10
21秒前
萧a完成签到,获得积分10
22秒前
Clover04应助李伟采纳,获得10
23秒前
24秒前
24秒前
24秒前
25秒前
超级老三完成签到,获得积分10
25秒前
Rolandiss完成签到 ,获得积分10
26秒前
crescent完成签到,获得积分10
27秒前
yy发布了新的文献求助30
28秒前
白金之星发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159611
求助须知:如何正确求助?哪些是违规求助? 2810617
关于积分的说明 7888779
捐赠科研通 2469621
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012