已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differentiable Compound Optics and Processing Pipeline Optimization for End-to-end Camera Design

计算机科学 管道(软件) 图像处理 人工神经网络 光学设计 人工智能 信号处理 计算机硬件 软件 图像(数学) 数字信号处理 程序设计语言
作者
Ethan Tseng,Ali Mosleh,Fahim Mannan,Karl St‐Arnaud,Avinash Sharma,Yifan Peng,Alexander Braun,Derek Nowrouzezahrai,Jean‐François Lalonde,Felix Heide
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:40 (2): 1-19 被引量:51
标识
DOI:10.1145/3446791
摘要

Most modern commodity imaging systems we use directly for photography—or indirectly rely on for downstream applications—employ optical systems of multiple lenses that must balance deviations from perfect optics, manufacturing constraints, tolerances, cost, and footprint. Although optical designs often have complex interactions with downstream image processing or analysis tasks, today’s compound optics are designed in isolation from these interactions. Existing optical design tools aim to minimize optical aberrations, such as deviations from Gauss’ linear model of optics, instead of application-specific losses, precluding joint optimization with hardware image signal processing (ISP) and highly parameterized neural network processing. In this article, we propose an optimization method for compound optics that lifts these limitations. We optimize entire lens systems jointly with hardware and software image processing pipelines, downstream neural network processing, and application-specific end-to-end losses. To this end, we propose a learned, differentiable forward model for compound optics and an alternating proximal optimization method that handles function compositions with highly varying parameter dimensions for optics, hardware ISP, and neural nets. Our method integrates seamlessly atop existing optical design tools, such as Zemax . We can thus assess our method across many camera system designs and end-to-end applications. We validate our approach in an automotive camera optics setting—together with hardware ISP post processing and detection—outperforming classical optics designs for automotive object detection and traffic light state detection. For human viewing tasks, we optimize optics and processing pipelines for dynamic outdoor scenarios and dynamic low-light imaging. We outperform existing compartmentalized design or fine-tuning methods qualitatively and quantitatively, across all domain-specific applications tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
letter完成签到 ,获得积分10
刚刚
GZX完成签到,获得积分10
7秒前
7秒前
WeiMooo完成签到,获得积分10
7秒前
传奇3应助shinn采纳,获得10
7秒前
8秒前
69关闭了69文献求助
9秒前
11秒前
虞美人完成签到,获得积分10
11秒前
阿Q发布了新的文献求助10
12秒前
CHAIZH发布了新的文献求助10
14秒前
Sssssss完成签到 ,获得积分10
18秒前
YUNG完成签到 ,获得积分10
18秒前
20秒前
zoey完成签到,获得积分10
21秒前
幸运完成签到 ,获得积分20
21秒前
柚C美式完成签到 ,获得积分10
21秒前
乐乐应助常常采纳,获得10
21秒前
顺心牛排完成签到 ,获得积分10
21秒前
22秒前
24秒前
小西贝发布了新的文献求助10
26秒前
26秒前
轻舟完成签到,获得积分10
26秒前
shinn发布了新的文献求助10
27秒前
28秒前
希望天下0贩的0应助xue采纳,获得10
29秒前
29秒前
cgsu完成签到,获得积分10
30秒前
cyclin9完成签到,获得积分10
31秒前
chanyi完成签到,获得积分10
31秒前
ZY完成签到 ,获得积分10
32秒前
re发布了新的文献求助10
33秒前
酷波er应助leclare采纳,获得10
33秒前
追寻的访文完成签到,获得积分10
34秒前
CodeCraft应助tang采纳,获得10
35秒前
35秒前
36秒前
小马甲应助阿Q采纳,获得10
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166315
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794163
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804626