Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

产品(数学) 业务 品牌形象 图像(数学) 计算机科学 广告 营销 人工智能 数学 几何学
作者
Geri Skenderi,Christian Joppi,Matteo Denitto,Marco Cristani
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.3104
摘要

Abstract New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞宇发布了新的文献求助10
2秒前
2秒前
2秒前
仔仔不吃肉肉完成签到,获得积分10
3秒前
桂花酒酿完成签到,获得积分10
3秒前
7秒前
shibomeng完成签到,获得积分10
8秒前
cyz发布了新的文献求助10
10秒前
流火完成签到,获得积分10
12秒前
YANYAN发布了新的文献求助20
13秒前
LYJ发布了新的文献求助10
14秒前
wgm完成签到,获得积分10
15秒前
科目三应助zuoyou采纳,获得10
16秒前
16秒前
科研通AI5应助健壮的怜烟采纳,获得10
18秒前
18秒前
乐乐应助lianmeiliu采纳,获得10
19秒前
20秒前
小青虫发布了新的文献求助10
21秒前
激动的萧发布了新的文献求助10
21秒前
今后应助过儿过儿采纳,获得10
23秒前
23秒前
科研通AI5应助猪猪hero采纳,获得10
25秒前
Owen应助cyz采纳,获得10
25秒前
章鱼发布了新的文献求助10
26秒前
夏弋完成签到,获得积分10
26秒前
28秒前
三年不洗澡完成签到 ,获得积分10
29秒前
29秒前
深情斓完成签到,获得积分10
29秒前
xiekunwhy完成签到,获得积分10
30秒前
等待完成签到,获得积分20
31秒前
LYJ完成签到,获得积分10
32秒前
32秒前
Estrella应助科研通管家采纳,获得10
33秒前
33秒前
李爱国应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
33秒前
猪猪hero应助科研通管家采纳,获得10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735916
求助须知:如何正确求助?哪些是违规求助? 3279635
关于积分的说明 10016487
捐赠科研通 2996335
什么是DOI,文献DOI怎么找? 1644022
邀请新用户注册赠送积分活动 781721
科研通“疑难数据库(出版商)”最低求助积分说明 749425