Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

元数据 自回归模型 产品(数学) 计算机科学 时间序列 人工神经网络 机器学习 数据挖掘 计量经济学 人工智能 万维网 数学 几何学 经济
作者
Geri Skenderi,Christian Joppi,Matteo Denitto,Marco Cristani
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (6): 1982-1997 被引量:5
标识
DOI:10.1002/for.3104
摘要

Abstract New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
1秒前
咚咚发布了新的文献求助10
1秒前
打打应助nyzcc采纳,获得10
1秒前
1秒前
狡猾的菠萝完成签到 ,获得积分10
1秒前
传奇3应助摆烂昊采纳,获得10
2秒前
2秒前
一马当先霄完成签到,获得积分10
3秒前
3秒前
yq关注了科研通微信公众号
3秒前
墨酒发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
cuiyanjie发布了新的文献求助10
4秒前
科研通AI2S应助songyuan采纳,获得10
4秒前
冷冷子发布了新的文献求助10
4秒前
小小申发布了新的文献求助10
4秒前
cy完成签到 ,获得积分10
4秒前
我爱学习发布了新的文献求助10
5秒前
阿雅完成签到 ,获得积分10
5秒前
5秒前
琳毓完成签到,获得积分10
5秒前
hehe_198发布了新的文献求助10
5秒前
6秒前
小蘑菇应助欧皇陈书宝采纳,获得10
6秒前
英俊的铭应助鳄鱼叁叁采纳,获得10
6秒前
Zoki完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
李健应助nyzcc采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
7秒前
深情安青应助小胳膊细腿采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
情怀应助LNF采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152