Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

元数据 自回归模型 产品(数学) 计算机科学 时间序列 人工神经网络 机器学习 数据挖掘 计量经济学 人工智能 万维网 数学 几何学 经济
作者
Geri Skenderi,Christian Joppi,Matteo Denitto,Marco Cristani
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (6): 1982-1997 被引量:5
标识
DOI:10.1002/for.3104
摘要

Abstract New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
现代的十八完成签到,获得积分10
刚刚
刚刚
智慧爷爷完成签到,获得积分10
1秒前
1秒前
星辰大海应助忧心的惜天采纳,获得30
1秒前
vooov发布了新的文献求助30
1秒前
乔啡完成签到,获得积分10
1秒前
爆米花应助洋洋呀采纳,获得10
1秒前
2秒前
脑洞疼应助cherish采纳,获得10
2秒前
惊鸿H完成签到 ,获得积分10
3秒前
小波发布了新的文献求助30
3秒前
Ava应助俗人采纳,获得10
3秒前
3秒前
嘿嘿完成签到,获得积分10
4秒前
三一完成签到,获得积分10
4秒前
zlxxianer发布了新的文献求助10
4秒前
小茉莉发布了新的文献求助10
4秒前
4秒前
酷波er应助黄浦江采纳,获得10
5秒前
hgfchg完成签到,获得积分10
5秒前
创新完成签到,获得积分10
5秒前
5秒前
5秒前
宁无剑完成签到 ,获得积分10
5秒前
科研通AI6应助answer采纳,获得10
6秒前
6秒前
6秒前
邹雄辉完成签到,获得积分10
6秒前
大个应助赫连烙采纳,获得10
6秒前
cc完成签到,获得积分10
6秒前
Orange应助鲁珊珊采纳,获得10
7秒前
宣以晴发布了新的文献求助10
7秒前
浮游应助sfwrbh采纳,获得10
8秒前
8秒前
lyy发布了新的文献求助30
9秒前
9秒前
satori完成签到,获得积分10
9秒前
zlxxianer完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603