Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

产品(数学) 业务 品牌形象 图像(数学) 计算机科学 广告 营销 人工智能 数学 几何学
作者
Geri Skenderi,Christian Joppi,Matteo Denitto,Marco Cristani
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.3104
摘要

Abstract New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵辛完成签到,获得积分20
1秒前
2秒前
繁荣的向梦完成签到,获得积分20
4秒前
5秒前
Kalimba完成签到,获得积分10
5秒前
等待洙发布了新的文献求助10
6秒前
LFJ完成签到,获得积分10
7秒前
8秒前
999发布了新的文献求助10
8秒前
oysp发布了新的文献求助10
11秒前
friends完成签到,获得积分10
13秒前
ouyangshi发布了新的文献求助10
13秒前
大模型应助等待洙采纳,获得10
14秒前
科研通AI2S应助康康采纳,获得30
14秒前
sadasdasd完成签到,获得积分10
16秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
cr_joker应助科研通管家采纳,获得30
17秒前
火华完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
修仙应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
oceanao应助999采纳,获得10
18秒前
英俊的铭应助ouyangshi采纳,获得10
18秒前
满意的乐驹完成签到,获得积分10
18秒前
19秒前
太渊发布了新的文献求助10
19秒前
充电宝应助无敌龙傲天采纳,获得10
20秒前
Xiangyang完成签到 ,获得积分10
21秒前
小于一完成签到 ,获得积分10
21秒前
21秒前
温暖幻桃完成签到,获得积分10
24秒前
Jayjay发布了新的文献求助10
26秒前
曾炯发布了新的文献求助10
27秒前
HXH完成签到,获得积分10
28秒前
mascot0111完成签到,获得积分10
29秒前
29秒前
29秒前
桐桐应助月亮采纳,获得10
29秒前
FashionBoy应助温暖幻桃采纳,获得30
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919