Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

元数据 自回归模型 产品(数学) 计算机科学 时间序列 人工神经网络 机器学习 数据挖掘 计量经济学 人工智能 万维网 数学 几何学 经济
作者
Geri Skenderi,Christian Joppi,Matteo Denitto,Marco Cristani
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (6): 1982-1997 被引量:5
标识
DOI:10.1002/for.3104
摘要

Abstract New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccqqww完成签到,获得积分20
刚刚
CodeCraft应助幸福哈密瓜采纳,获得10
刚刚
晚晚发布了新的文献求助10
1秒前
1秒前
1秒前
CipherSage应助时尚朋友采纳,获得10
2秒前
2秒前
3秒前
3秒前
HHHhjl完成签到,获得积分10
3秒前
Chaos完成签到,获得积分10
4秒前
CodeCraft应助dt采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
加勒比海带完成签到,获得积分10
5秒前
5秒前
qianduoduo完成签到 ,获得积分10
5秒前
putong发布了新的文献求助10
6秒前
杨宝发布了新的文献求助10
7秒前
科研通AI6应助背后的雨竹采纳,获得10
7秒前
qqwdss发布了新的文献求助10
8秒前
8秒前
李健应助科研小白采纳,获得10
9秒前
科研通AI6应助李开心采纳,获得10
10秒前
qianduoduo关注了科研通微信公众号
11秒前
理理发布了新的文献求助10
11秒前
11秒前
英俊的铭应助Yzz采纳,获得10
11秒前
12秒前
wanci应助WYS采纳,获得10
12秒前
SciGPT应助阿巴阿巴采纳,获得10
12秒前
12秒前
侧耳倾听发布了新的文献求助10
12秒前
13秒前
Kathy发布了新的文献求助10
14秒前
科目三应助Salut采纳,获得10
15秒前
李爱国应助chengzi202采纳,获得10
15秒前
852应助123采纳,获得10
15秒前
15秒前
深情安青应助侧耳倾听采纳,获得10
16秒前
Wlgd完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917