Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

元数据 自回归模型 产品(数学) 计算机科学 时间序列 人工神经网络 机器学习 数据挖掘 计量经济学 人工智能 万维网 数学 几何学 经济
作者
Geri Skenderi,Christian Joppi,Matteo Denitto,Marco Cristani
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (6): 1982-1997 被引量:5
标识
DOI:10.1002/for.3104
摘要

Abstract New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何hh发布了新的文献求助10
刚刚
刚刚
刚刚
123发布了新的文献求助10
刚刚
美好南晴发布了新的文献求助10
1秒前
科研波比发布了新的文献求助10
1秒前
1秒前
橡树果果完成签到,获得积分10
1秒前
CipherSage应助许哆哆采纳,获得10
2秒前
3秒前
3秒前
土豆鱼发布了新的文献求助10
3秒前
蓝色花生豆完成签到,获得积分0
4秒前
4秒前
拥一人入怀完成签到,获得积分10
4秒前
简单生活完成签到 ,获得积分10
5秒前
荔枝发布了新的文献求助10
5秒前
5秒前
5秒前
simdows发布了新的文献求助10
6秒前
冯子如发布了新的文献求助10
7秒前
拼搏向上发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
JamesPei应助负责中恶采纳,获得10
7秒前
8秒前
9秒前
科研通AI6应助谦让的口红采纳,获得10
9秒前
Kiwi发布了新的文献求助10
9秒前
庄默羽完成签到,获得积分10
11秒前
ztt关闭了ztt文献求助
11秒前
等待晓筠发布了新的文献求助10
11秒前
12秒前
无极微光应助迷人的冰旋采纳,获得20
12秒前
13秒前
美好南晴完成签到,获得积分10
13秒前
maizhan发布了新的文献求助20
13秒前
Hello应助fx采纳,获得10
13秒前
无奈的迎丝完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396