A New Adversarial Embedding Method for Enhancing Image Steganography

计算机科学 隐写术 封面(代数) 对抗制 卷积神经网络 人工智能 嵌入 图像(数学) 隐写分析技术 一般化 模式识别(心理学) 数据挖掘 理论计算机科学 数学 机械工程 工程类 数学分析
作者
Minglin Liu,Weiqi Luo,Peijia Zheng,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 4621-4634 被引量:36
标识
DOI:10.1109/tifs.2021.3111748
摘要

Image steganography aims to embed secret messages into cover images in an imperceptible manner. While steganalysis tries to identify stegos from covers, which is a special binary classification problem. Recently, some literatures show that the adversarial embedding can mislead the advanced steganalyzers based on convolutional neural network (CNN), and thus enhance the steganography security. Since adding perturbations to stegos may lead to messages extraction failure due to properties of syndrome-trellis codes (STC), the existing adversarial examples are derived from covers or their enhanced versions, while those stegos are not fully utilized. In this paper, we propose a new adversarial embedding scheme for image steganography. Unlike those related works, we first combine multiple gradients of cover and generated stegos to determine the directions of cost modifications. Next, instead of adjusting all or a random part of embedding costs in existing works, we carefully select the candidate costs according to the amplitudes of cover gradients and their costs. Extensive experimental results demonstrate that by adjusting a tiny part of embedding costs (less than 5% in most cases), the proposed method can significantly improve the security of five modern steganographic methods evaluated on both re-trained CNN-based and traditional steganalyzers, and achieve much better security performances compared with related methods. In addition, the security performances evaluated on different image database show that the generalization of the proposed method is good.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_VZG7GZ应助Zenglongying采纳,获得10
3秒前
3秒前
scq发布了新的文献求助10
4秒前
4秒前
5秒前
yaozi发布了新的文献求助10
5秒前
Rewi_Zhang发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
KKIII发布了新的文献求助10
7秒前
海盗是我最爱的宝宝完成签到,获得积分10
8秒前
笔墨留香完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Jasper应助sure采纳,获得10
10秒前
10秒前
关键词完成签到,获得积分10
10秒前
12秒前
SciGPT应助yaozi采纳,获得10
12秒前
13秒前
0orange发布了新的文献求助10
13秒前
YUMI发布了新的文献求助10
14秒前
飞飞飞发布了新的文献求助30
14秒前
14秒前
追寻的问玉完成签到 ,获得积分10
14秒前
18秒前
18秒前
KKIII完成签到,获得积分10
19秒前
19秒前
yaozi完成签到,获得积分10
19秒前
20秒前
LZQ应助温暖元容采纳,获得10
20秒前
liubin发布了新的社区帖子
21秒前
bigxianyu发布了新的文献求助30
22秒前
洛尘完成签到,获得积分10
25秒前
玉尘发布了新的文献求助10
25秒前
桃紫完成签到,获得积分10
25秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701566
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876150
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625279
邀请新用户注册赠送积分活动 769926
科研通“疑难数据库(出版商)”最低求助积分说明 742630