The widespread use of antibiotics has raised global concerns, but scarce information on antibiotics in the subtropical marine environment is available. In the present study, seawater and sediment samples were collected to investigate the occurrence, spatial distribution, source, and ecological risks of 22 antibiotics in the Beibu Gulf. The total concentrations of target antibiotics (∑antibiotics) were in the range of 1.74 ng/L to 23.83 ng/L for seawater and 1.33 ng/g to 8.55 ng/g dry weight (dw) for sediment. Spatially, a decreasing trend of antibiotic levels from coast to offshore area was observed, with relatively high levels at the sites close to the Qinzhou Bay and Qiongzhou Strait. Sulfamethoxazole (SMX), trimethoprim (TMP), and norfloxacin (NOX) were predominant in seawater, while NOX, enoxacin (ENX), and enrofloxacin (ENR) were the most abundant antibiotics in sediment. In general, the sediment-water partitioning coefficients (Kd) were positively correlated with log molecular weight (MW). Salinity, particle size, and pH of water were predicted to be vital factors influencing the partition of sulfadiazine (SDZ), CIX, and ENR (p < 0.05). Livestock and aquaculture were identified as dominant sources of antibiotics in the Beibu Gulf based on PCA-MLR and Unmix model. Risk assessment revealed that SMX, CIX could pose medium risks to algae in the Beibu Gulf. Overall, our results provided paramount insights into understanding the fate and transport behaviors of antibiotics in the subtropical marine environment.