MXenes公司
纳米团簇
材料科学
法拉第效率
过电位
电解质
锂(药物)
化学工程
扩散
化学物理
纳米技术
电极
化学
电化学
物理化学
工程类
物理
内分泌学
热力学
医学
作者
Xiaobin Hui,Danyang Zhao,Peng Wang,Haoxiang Di,Xiaoli Ge,Peng Zhang,Longwei Yin
出处
期刊:Small
[Wiley]
日期:2021-11-23
卷期号:18 (5)
被引量:20
标识
DOI:10.1002/smll.202104439
摘要
The commercialization of MXenes as anodes for lithium-ion batteries is largely impeded by low initial coulombic efficiency (ICE) and unfavorable cycling stability, which are closely associated with defects such as Ti vacancies (VTi ) in Ti3 C2 MXenes. Herein, an effective strategy is developed to deactivate VTi defects by in situ growing Al2 O3 nanoclusters on MXenes to alleviate the irreversible electrolyte decomposition and Li dendrites formation trend induced by defects, improving ICE and cycling stability. Furthermore, it is revealed that excessively lithiophilic VTi defects would impede Li ions diffusion due to their strong adsorption, leading to a locally nonuniform Li flux to these "hot spots," setting scene for the formation of Li dendrites. The Al2 O3 nanoclusters anchored on VTi sites can not only improve Li diffusion kinetics but also promote the homogeneous solid electrolyte interphase formation with small charge transfer resistance, achieving uniform Li deposition in a smaller overpotential without formation of Li dendrites. As expected, Ti3 C2 @Al2 O3 -11 electrode delivers a high ICE of 76.6% and an outstanding specific capacity of 285.5 mAh g-1 after 500 cycles, which is much higher than that of pristine Ti3 C2 sample. This work sheds light on modulating defects for high-performance energy storage materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI