Vocal cord lesions classification based on deep convolutional neural network and transfer learning

喉镜检查 卷积神经网络 人工智能 计算机科学 学习迁移 深度学习 工作流程 接收机工作特性 模式识别(心理学) 放射科 机器学习 医学 插管 外科 数据库
作者
Qian Zhao,Yuqing He,Yanda Wu,Dongyan Huang,Yang Wang,Cai Sun,Jun Ju,Jiasen Wang,Jeremy Jianshuo‐li Mahr
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 432-442 被引量:30
标识
DOI:10.1002/mp.15371
摘要

Laryngoscopy, the most common diagnostic method for vocal cord lesions (VCLs), is based mainly on the visual subjective inspection of otolaryngologists. This study aimed to establish a highly objective computer-aided VCLs diagnosis system based on deep convolutional neural network (DCNN) and transfer learning.To classify VCLs, our method combined the DCNN backbone with transfer learning on a system specifically finetuned for a laryngoscopy image dataset. Laryngoscopy image database was collected to train the proposed system. The diagnostic performance was compared with other DCNN-based models. Analysis of F1 score and receiver operating characteristic curves were conducted to evaluate the performance of the system.Beyond the existing VCLs diagnosis method, the proposed system achieved an overall accuracy of 80.23%, an F1 score of 0.7836, and an area under the curve (AUC) of 0.9557 for four fine-grained classes of VCLs, namely, normal, polyp, keratinization, and carcinoma. It also demonstrated robust classification capacity for detecting urgent (keratinization, carcinoma) and non-urgent (normal, polyp), with an overall accuracy of 0.939, a sensitivity of 0.887, a specificity of 0.993, and an AUC of 0.9828. The proposed method also outperformed clinicians in the classification of normal, polyps, and carcinoma at an extremely low time cost.The VCLs diagnosis system succeeded in using DCNN to distinguish the most common VCLs and normal cases, holding a practical potential for improving the overall diagnostic efficacy in VCLs examinations. The proposed VCLs diagnosis system could be appropriately integrated into the conventional workflow of VCLs laryngoscopy as a highly objective auxiliary method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqxqxqxqxqx完成签到,获得积分10
刚刚
彭于晏应助研友_Ze0vBn采纳,获得10
2秒前
迷路的依波完成签到,获得积分10
2秒前
lili完成签到 ,获得积分10
3秒前
慕青应助牛牛眉目采纳,获得10
3秒前
安详凡发布了新的文献求助10
3秒前
4秒前
5秒前
Orange应助Aria采纳,获得10
5秒前
一直发布了新的文献求助10
10秒前
情怀应助月yue采纳,获得10
11秒前
WangT发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
2333完成签到,获得积分10
14秒前
胡霖完成签到,获得积分10
16秒前
顾矜应助ljx采纳,获得10
17秒前
N型半导体发布了新的文献求助10
17秒前
Yuki0616完成签到,获得积分10
18秒前
小鸭飞发布了新的文献求助10
18秒前
WangT完成签到,获得积分10
19秒前
领导范儿应助N型半导体采纳,获得10
21秒前
21秒前
21秒前
悟空发布了新的文献求助10
22秒前
嗯哼发布了新的文献求助10
23秒前
24秒前
月yue发布了新的文献求助10
24秒前
研友_Ze0vBn发布了新的文献求助10
27秒前
李健春完成签到 ,获得积分10
29秒前
脑洞疼应助一直采纳,获得10
29秒前
31秒前
31秒前
33秒前
DoLaso完成签到,获得积分10
33秒前
33秒前
mylaodao完成签到,获得积分0
34秒前
鱼雁发布了新的文献求助10
37秒前
ljx发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357