喉镜检查
卷积神经网络
人工智能
计算机科学
学习迁移
深度学习
工作流程
接收机工作特性
模式识别(心理学)
放射科
机器学习
医学
插管
外科
数据库
作者
Qian Zhao,Yuqing He,Yanda Wu,Dongyan Huang,Yang Wang,Cai Sun,Jun Ju,Jiasen Wang,Jeremy Jianshuo‐li Mahr
摘要
Laryngoscopy, the most common diagnostic method for vocal cord lesions (VCLs), is based mainly on the visual subjective inspection of otolaryngologists. This study aimed to establish a highly objective computer-aided VCLs diagnosis system based on deep convolutional neural network (DCNN) and transfer learning.To classify VCLs, our method combined the DCNN backbone with transfer learning on a system specifically finetuned for a laryngoscopy image dataset. Laryngoscopy image database was collected to train the proposed system. The diagnostic performance was compared with other DCNN-based models. Analysis of F1 score and receiver operating characteristic curves were conducted to evaluate the performance of the system.Beyond the existing VCLs diagnosis method, the proposed system achieved an overall accuracy of 80.23%, an F1 score of 0.7836, and an area under the curve (AUC) of 0.9557 for four fine-grained classes of VCLs, namely, normal, polyp, keratinization, and carcinoma. It also demonstrated robust classification capacity for detecting urgent (keratinization, carcinoma) and non-urgent (normal, polyp), with an overall accuracy of 0.939, a sensitivity of 0.887, a specificity of 0.993, and an AUC of 0.9828. The proposed method also outperformed clinicians in the classification of normal, polyps, and carcinoma at an extremely low time cost.The VCLs diagnosis system succeeded in using DCNN to distinguish the most common VCLs and normal cases, holding a practical potential for improving the overall diagnostic efficacy in VCLs examinations. The proposed VCLs diagnosis system could be appropriately integrated into the conventional workflow of VCLs laryngoscopy as a highly objective auxiliary method.
科研通智能强力驱动
Strongly Powered by AbleSci AI