🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新

Kaplan-Meier Curves, Log-Rank Tests, and Cox Regression for Time-to-Event Data

比例危险模型 生存分析 对数秩检验 医学 事件(粒子物理) 统计 时间点 回归分析 加速失效时间模型 回归 Kaplan-Meier估计量 外科 数学 量子力学 美学 物理 哲学
作者
Patrick Schober,Thomas R. Vetter
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
卷期号:132 (4): 969-970 被引量:20
标识
DOI:10.1213/ane.0000000000005358
摘要

Related Article, see p 971KEY POINT: Kaplan-Meier curves, log-rank-test, and Cox proportional hazards regression are common examples of “survival analysis” techniques, which are used to analyze the time until an event of interest occurs.In this issue of Anesthesia & Analgesia, Song et al1 report results of a randomized trial in which they studied the onset of labor analgesia with 3 different epidural puncture and maintenance techniques. These authors compared the techniques on the primary outcome of time until adequate analgesia was reached—defined as a visual analog scale (VAS) score of ≤30 mm—with Kaplan-Meier curves, log-rank tests, and Cox proportional hazards regression. In studies addressing the time until an event of interest occurs, some but not all patients will typically have experienced the event at the end of the follow-up period. Patients in whom the even has not occurred—or who are lost to follow-up during the observation period—are said to be “censored.” It is unknown when and, depending on the event, if the event will occur.2 Simply excluding censored patients from the analysis would bias the analysis results. Specific statistical methods are thus needed that can appropriately account for such censored patient observations. Since the event of interest is often death, these analyses are traditionally termed “survival analyses,” and the time until the event occurs is referred to as the “survival time.” However, as done by Song et al,1 these techniques can also be used for the analysis of the time to any other well-defined event. Among the many available survival analysis methods, Kaplan-Meier curves, log-rank tests to compare these curves, and Cox proportional hazards regression are most commonly used. The Kaplan-Meier method estimates the survival function, which is the probability of “surviving” (ie, the probability that the event has not yet occurred) beyond a certain time point. The corresponding Kaplan-Meier curve is a plot of probability (y-axis) against time (x-axis) (Figure). This curve is a step function in which the estimated survival probability drops vertically whenever one or more outcome events occurred with a horizontal time interval between events. Plotting several Kaplan-Meier curves in 1 figure allows for a visual comparison of estimated survival probabilities between treatment or exposure groups; the curves can formally be compared with a log-rank test. The null hypothesis tested by the log-rank test is that the survival curves are identical over time; it thus compares the entire curves rather than the survival probability at a specific time point.Figure.: Kaplan-Meier plot of the percentage of patients without adequate analgesia, redrawn from Figure 2 in Song et al.1 Note that the original figure plotted the probability of adequate analgesia, as this is easily interpretable for readers in the context of the study research aim. In contrast, we present the figure as conventionally done in a Kaplan-Meier curve or plot, with the estimated probability (here expressed as percentage) of “survival” plotted on the y-axis. Vertical drops in the plot indicate that one or more patients reached the end point of experiencing adequate analgesia at the respective time point. CEI indicates continuous epidural infusion; DPE, dural puncture epidural; EP, conventional epidural; PIEB, programmed intermittent epidural bolus.The log-rank test assesses statistical significance but does not estimate an effect size. Moreover, while there is a stratified log-rank test that can adjust the analysis for a few categorical variables, the log-rank test is essentially not useful to simultaneously analyze the relationships of multiple variables on the survival time. Thus, when researchers either desire (a) to estimate an effect size3 (ie, the magnitude of the difference between groups)—as done in the study by Song et al1—or (b) to test or control for effects of several independent variables on survival time (eg, to adjust for confounding in observational research),4 a Cox proportional hazards model is typically used. The Cox proportional hazards regression5 technique does not actually model the survival time or probability but the so-called hazard function. This function can be thought of as the instantaneous risk of experiencing the event of interest at a certain time point (ie, the probability of experiencing the event during an infinitesimally small time period). The event risk is inversely related to the survival function; thus, “survival” rapidly declines when the hazard rate is high and vice versa. The exponentiated regression coefficients in Cox proportional hazards regression can conveniently be interpreted in terms of a hazard ratio (HR) for a 1-unit increase in the independent variable, for continuous independent variables, or versus a reference category, for categorical independent variables. While the HR is not the same as a relative risk, it can for all practical purposes be interpreted as such by researchers who are not familiar with the intricacies of survival analysis techniques. For those wishing to delve deeper into the details and learn more about survival analysis—including but not limited to the topics that we briefly touch on here—we refer to our tutorial on this topic previously published in Anesthesia & Analgesia.2 Importantly, even though the techniques discussed here do not make assumptions on the distribution of the survival times or survival probabilities, these analysis methods have other important assumptions that must be met for valid inferences, as also discussed in more detail in the previous tutorial.2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月28日)
1#312 科研小民工
125
1870
2#263 shinysparrow
65
1980
3#257 nozero
88
1690
4#180 SYLH
83
970
5#160 劲秉
54
1060
6#102 xjcy
51
510
7#90 有人
43
470
8#89 昏睡的蟠桃
22
670
9#82 枫叶
41
410
10#71 sunyz
23
480
11#58 默默地读文献
29
290
12#56 36456657
28
280
13#56 从容芮
23
330
14#50 言非离
21
290
15#50 CAOHOU
25
250
16#46 kingwill
23
230
17#46 VDC
14
320
18#44 时丶倾
22
220
19#43 菠菜
3
400
20#40 天才小能喵
17
230
21#40 果粒橙
20
200
22#39 pcr163
6
330
23#32 遇上就这样吧
15
170
24#30 生医工小学生
15
150
25#28 那年春
14
140
26#26 CyrusSo524
11
150
27#24 1+1
12
120
28#22 xiaxiao
2
200
29#22 实验好难
11
110
30#20 wwz
10
100
31#20 子车茗
7
130
32#18 Auston_zhong
9
90
第1名:50元;第2名:30元;第3名:10元

总排名
1#6123 nozero
2370
37530
2#4766 SYLH
2373
23930
3#4370 shinysparrow
1832
25380
4#4327 科研小民工
1608
27190
5#3089 xjcy
1538
15510
6#2389 小透明
944
14450
7#1504 天才小能喵
714
7900
8#1340 迟大猫
670
6700
9#1019 CAOHOU
507
5120
10#860 劲秉
275
5850
11#856 浦肯野
360
4960
12#841 昏睡的蟠桃
263
5780
13#810 S77
405
4050
14#778 从容芮
326
4520
15#757 36456657
368
3890
16#735 子车茗
340
3950
17#654 毛豆
325
3290
18#540 cdercder
214
3260
19#477 curtisness
233
2440
20#418 加菲丰丰
205
2130
21#370 Catalina_S
182
1880
22#369 我是站长才怪
181
1880
23#350 研友_Z30GJ8
174
1760
24#340 枫叶
169
1710
25#326 史小菜
144
1820
26#312 彭于彦祖
101
2110
27#292 HEIKU
146
1460
28#292 QOP
145
1470
29#289 tuanheqi
30
2590
30#278 1+1
138
1400
31#274 点着太阳的人
98
1760
32#266 不懈奋进
119
1470
33#261 一一
87
1740
34#258 VDC
84
1740
35#254 见青山
126
1280
36#248 从容的惋庭
124
1240
37#244 Auston_zhong
122
1220
38#240 suibianba
113
1270
39#236 cctv18
117
1190
40#232 柒月
42
1900
41#232 贰鸟
109
1230
42#228 遇上就这样吧
108
1200
43#226 8R60d8
113
1130
44#226 实验好难
104
1220
45#222 Leon
110
1120
46#222 默默地读文献
111
1110
47#216 幽默的溪灵
108
1080
48#214 火星上的菲鹰
103
1110
49#214 zho
107
1070
50#212 muxiangrong
87
1250
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
ao123完成签到,获得积分20
1秒前
pfshan应助Mr_Hao采纳,获得30
1秒前
simon发布了新的文献求助10
1秒前
1秒前
希望天下0贩的0应助lwb采纳,获得10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
zjw完成签到,获得积分10
3秒前
3秒前
3秒前
Elaine完成签到,获得积分10
3秒前
在水一方应助空白采纳,获得10
4秒前
4秒前
4秒前
可爱的函函应助YuHang采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
WJQ完成签到,获得积分10
6秒前
7秒前
领导范儿应助lx840518采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
pka完成签到,获得积分10
8秒前
月牙发布了新的文献求助10
8秒前
8秒前
nnn完成签到,获得积分10
8秒前
长安发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Akim应助simon采纳,获得10
10秒前
直率的宛海完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
顺心飞雪完成签到,获得积分10
11秒前
不安惜寒完成签到,获得积分10
12秒前
12秒前
pka发布了新的文献求助10
12秒前
daqing发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 3000
Production Logging: Theoretical and Interpretive Elements 2700
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Continuum Thermodynamics and Material Modelling 2000
Conference Record, IAS Annual Meeting 1977 1250
NSF/ANSI 49-2024 Biosafety Cabinetry: Design, Construction, Performance, and Field Certification 500
Scale-up of mixotrophic cultivation with Galdieria sulphuraria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3640522
求助须知:如何正确求助?哪些是违规求助? 3208253
关于积分的说明 9674756
捐赠科研通 2915029
什么是DOI,文献DOI怎么找? 1595408
邀请新用户注册赠送积分活动 751231
科研通“疑难数据库(出版商)”最低求助积分说明 731327