Giant Tuning of Electronic and Thermoelectric Properties by Epitaxial Strain in p-Type Sr-Doped LaCrO3 Transparent Thin Films

材料科学 热电效应 塞贝克系数 外延 热电材料 兴奋剂 电阻率和电导率 薄膜 分子束外延 极限抗拉强度 光电子学 凝聚态物理 复合材料 热导率 纳米技术 电气工程 物理 图层(电子) 热力学 工程类
作者
Dong Han,Rahma Moalla,Ignasi Fina,Valentina M. Giordano,Marc d’Esperonnat,Claude Botella,G. Grenet,Régis Debord,S. Pailhès,Guillaume Saint‐Girons,Romain Bachelet
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:3 (8): 3461-3471 被引量:7
标识
DOI:10.1021/acsaelm.1c00425
摘要

The impact of epitaxial strain on the structural, electronic, and thermoelectric properties of p-type transparent Sr-doped LaCrO3 thin films has been investigated. For this purpose, high-quality fully strained La0.75Sr0.25CrO3 (LSCO) epitaxial thin films were grown by molecular beam epitaxy on three different (pseudo)cubic (001)-oriented perovskite oxide substrates: LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and DyScO3. The lattice mismatch between the LSCO films and the substrates induces in-plane strain ranging from -2.06% (compressive) to +1.75% (tensile). The electric conductivity can be controlled over 2 orders of magnitude, ranging from 0.5 S/cm (tensile strain) to 35 S/cm (compressive strain). Consistently, the Seebeck coefficient S can be finely tuned by a factor of almost 2 from 127 microV/K (compressive strain) to 208 microV/K (tensile strain). Interestingly, we show that the thermoelectric power factor can consequently be tuned by almost 2 orders of magnitude. The compressive strain yields a remarkable enhancement by a factor of 3 for 2% compressive strain with respect to almost relaxed films. These results demonstrate that epitaxial strain is a powerful lever to control the electric properties of LSCO and enhance its thermoelectric properties, which is of high interest for various devices and key applications such as thermal energy harvesters, coolers, transparent conductors, photocatalyzers, and spintronic memories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zh20130完成签到,获得积分10
刚刚
刚刚
TT发布了新的文献求助10
1秒前
Star1983发布了新的文献求助10
1秒前
研友_LXdbaL完成签到,获得积分10
2秒前
3秒前
在水一方应助66采纳,获得10
4秒前
4秒前
4秒前
缘一发布了新的文献求助10
5秒前
junzilan发布了新的文献求助10
6秒前
CipherSage应助赖道之采纳,获得10
7秒前
ccc完成签到,获得积分10
7秒前
7秒前
7秒前
10秒前
Pauline完成签到,获得积分10
12秒前
jackie发布了新的文献求助10
12秒前
笨笨摇伽发布了新的文献求助10
14秒前
科目三应助皓月繁星采纳,获得10
14秒前
tomato完成签到,获得积分20
16秒前
CodeCraft应助缘一采纳,获得10
17秒前
小二郎应助刘铭晨采纳,获得10
17秒前
17秒前
大个应助风雨1210采纳,获得10
17秒前
一壶清酒完成签到,获得积分10
17秒前
18秒前
tomato发布了新的文献求助30
19秒前
陈莹发布了新的文献求助10
20秒前
21秒前
21秒前
小狗同志006完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
皓月繁星完成签到,获得积分10
22秒前
ZeJ发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808