Deep Learning to Estimate Biological Age From Chest Radiographs

医学 胸片 年龄调整 置信区间 危险系数 射线照相术 生物年龄 深度学习 人工智能 内科学 放射科 外科 老年学 流行病学
作者
Vineet K. Raghu,Jakob Weiss,Udo Hoffmann,Hugo J.W.L. Aerts,Michael T. Lu
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:14 (11): 2226-2236 被引量:5
标识
DOI:10.1016/j.jcmg.2021.01.008
摘要

The goal of this study was to assess whether a deep learning estimate of age from a chest radiograph image (CXR-Age) can predict longevity beyond chronological age. Chronological age is an imperfect measure of longevity. Biological age, a measure of overall health, may improve personalized care. This paper proposes a new way to estimate biological age using a convolutional neural network that takes as input a CXR image and outputs a chest x-ray age (in years) as a measure of long-term mortality risk. CXR-Age was developed using CXR from 116,035 individuals and validated in 2 held-out testing sets: 1) 75% of the CXR arm of PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial) (N = 40,967); and 2) the CXR arm of NLST (National Lung Screening Trial) (N = 5,414). CXR-Age was compared to chronological age and a multivariable regression model of chronological age, risk factors, and radiograph findings to predict all-cause and cardiovascular mortality with a maximum 23 years and 13 years of follow-up, respectively. The primary outcome was observed mortality; results are provided for the testing datasets only. In the PLCO testing dataset, a 5-year increase in CXR-Age carried a higher risk of all-cause mortality than a 5-year increase in chronological age (CXR-Age hazard ratio [HR]: 2.26 [95% confidence interval (CI): 2.24 to 2.29] vs. chronological age HR: 1.77 [95% CI: 1.75 to 1.78]; p < 0.001). A similar pattern was found for cardiovascular mortality (CXR-Age cause-specific HR: 2.45 per 5 years [95% CI: 2.34 to 2.56] vs. chronological age HR: 1.82 per 5 years [95% CI: 1.74 to 1.90]). Similar results were seen for both outcomes in the NLST external testing dataset. Adding CXR-Age to the multivariable model resulted in significant improvements for predicting both outcomes in both testing datasets (p < 0.001 for all comparisons). Based on a CXR image, CXR-Age predicted long-term all-cause and cardiovascular mortality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪山晴发布了新的文献求助30
刚刚
领导范儿应助朴实的天晴采纳,获得10
刚刚
一颗小番茄完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
唐美璇完成签到,获得积分20
2秒前
2秒前
包容冰巧发布了新的文献求助10
2秒前
2秒前
朴实剑通完成签到,获得积分10
3秒前
3秒前
3秒前
摸鱼王完成签到,获得积分10
3秒前
Gauss应助zhihaiyu采纳,获得50
4秒前
4秒前
Ava应助陈十一yyyyy采纳,获得10
4秒前
栗子完成签到,获得积分10
4秒前
简化为完成签到,获得积分10
4秒前
KevinDante完成签到 ,获得积分10
5秒前
li完成签到,获得积分10
5秒前
娜娜完成签到,获得积分20
6秒前
豆本豆发布了新的文献求助10
6秒前
自知则知之完成签到,获得积分10
6秒前
6秒前
6秒前
杨永信发布了新的文献求助10
6秒前
echo发布了新的文献求助10
7秒前
宋宋发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
FashionBoy应助hxy采纳,获得10
8秒前
1090发布了新的文献求助10
8秒前
8秒前
小猪发布了新的文献求助10
9秒前
宁幼萱发布了新的文献求助10
9秒前
合适板栗完成签到,获得积分10
9秒前
10秒前
星辰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839