Deep Learning to Estimate Biological Age From Chest Radiographs

医学 胸片 年龄调整 置信区间 危险系数 射线照相术 生物年龄 深度学习 人工智能 内科学 放射科 外科 老年学 流行病学
作者
Vineet K. Raghu,Jakob Weiss,Udo Hoffmann,Hugo J.W.L. Aerts,Michael T. Lu
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:14 (11): 2226-2236 被引量:5
标识
DOI:10.1016/j.jcmg.2021.01.008
摘要

The goal of this study was to assess whether a deep learning estimate of age from a chest radiograph image (CXR-Age) can predict longevity beyond chronological age. Chronological age is an imperfect measure of longevity. Biological age, a measure of overall health, may improve personalized care. This paper proposes a new way to estimate biological age using a convolutional neural network that takes as input a CXR image and outputs a chest x-ray age (in years) as a measure of long-term mortality risk. CXR-Age was developed using CXR from 116,035 individuals and validated in 2 held-out testing sets: 1) 75% of the CXR arm of PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial) (N = 40,967); and 2) the CXR arm of NLST (National Lung Screening Trial) (N = 5,414). CXR-Age was compared to chronological age and a multivariable regression model of chronological age, risk factors, and radiograph findings to predict all-cause and cardiovascular mortality with a maximum 23 years and 13 years of follow-up, respectively. The primary outcome was observed mortality; results are provided for the testing datasets only. In the PLCO testing dataset, a 5-year increase in CXR-Age carried a higher risk of all-cause mortality than a 5-year increase in chronological age (CXR-Age hazard ratio [HR]: 2.26 [95% confidence interval (CI): 2.24 to 2.29] vs. chronological age HR: 1.77 [95% CI: 1.75 to 1.78]; p < 0.001). A similar pattern was found for cardiovascular mortality (CXR-Age cause-specific HR: 2.45 per 5 years [95% CI: 2.34 to 2.56] vs. chronological age HR: 1.82 per 5 years [95% CI: 1.74 to 1.90]). Similar results were seen for both outcomes in the NLST external testing dataset. Adding CXR-Age to the multivariable model resulted in significant improvements for predicting both outcomes in both testing datasets (p < 0.001 for all comparisons). Based on a CXR image, CXR-Age predicted long-term all-cause and cardiovascular mortality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静道罡完成签到,获得积分10
1秒前
chengt2016完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
小二郎应助岁月轮回采纳,获得10
3秒前
3秒前
Lylin发布了新的文献求助10
3秒前
CodeCraft应助大林采纳,获得10
3秒前
leslie完成签到,获得积分10
3秒前
3秒前
3秒前
Feathamity发布了新的文献求助10
4秒前
春花完成签到 ,获得积分10
4秒前
4秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
齐一凡发布了新的文献求助10
8秒前
xiiixixiixi发布了新的文献求助10
9秒前
FashionBoy应助Feathamity采纳,获得10
9秒前
10秒前
温暖访枫发布了新的文献求助10
10秒前
melonnale完成签到,获得积分10
10秒前
yywa发布了新的文献求助10
11秒前
科目三应助番茄采纳,获得10
11秒前
简简发布了新的文献求助10
14秒前
15秒前
甜蜜秋白发布了新的文献求助30
15秒前
16秒前
17秒前
18秒前
秋野春茶完成签到,获得积分10
19秒前
19秒前
美罗培南完成签到 ,获得积分0
19秒前
right应助zhao采纳,获得10
19秒前
千层酥发布了新的文献求助10
19秒前
浮游应助内向的青枫采纳,获得10
20秒前
20秒前
20秒前
温暖访枫完成签到,获得积分10
21秒前
思源应助淡定的美女采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325