Deep Learning to Estimate Biological Age From Chest Radiographs

医学 胸片 年龄调整 置信区间 危险系数 射线照相术 生物年龄 深度学习 人工智能 内科学 放射科 外科 老年学 流行病学
作者
Vineet K. Raghu,Jakob Weiss,Udo Hoffmann,Hugo J.W.L. Aerts,Michael T. Lu
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:14 (11): 2226-2236 被引量:5
标识
DOI:10.1016/j.jcmg.2021.01.008
摘要

The goal of this study was to assess whether a deep learning estimate of age from a chest radiograph image (CXR-Age) can predict longevity beyond chronological age. Chronological age is an imperfect measure of longevity. Biological age, a measure of overall health, may improve personalized care. This paper proposes a new way to estimate biological age using a convolutional neural network that takes as input a CXR image and outputs a chest x-ray age (in years) as a measure of long-term mortality risk. CXR-Age was developed using CXR from 116,035 individuals and validated in 2 held-out testing sets: 1) 75% of the CXR arm of PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial) (N = 40,967); and 2) the CXR arm of NLST (National Lung Screening Trial) (N = 5,414). CXR-Age was compared to chronological age and a multivariable regression model of chronological age, risk factors, and radiograph findings to predict all-cause and cardiovascular mortality with a maximum 23 years and 13 years of follow-up, respectively. The primary outcome was observed mortality; results are provided for the testing datasets only. In the PLCO testing dataset, a 5-year increase in CXR-Age carried a higher risk of all-cause mortality than a 5-year increase in chronological age (CXR-Age hazard ratio [HR]: 2.26 [95% confidence interval (CI): 2.24 to 2.29] vs. chronological age HR: 1.77 [95% CI: 1.75 to 1.78]; p < 0.001). A similar pattern was found for cardiovascular mortality (CXR-Age cause-specific HR: 2.45 per 5 years [95% CI: 2.34 to 2.56] vs. chronological age HR: 1.82 per 5 years [95% CI: 1.74 to 1.90]). Similar results were seen for both outcomes in the NLST external testing dataset. Adding CXR-Age to the multivariable model resulted in significant improvements for predicting both outcomes in both testing datasets (p < 0.001 for all comparisons). Based on a CXR image, CXR-Age predicted long-term all-cause and cardiovascular mortality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Peth发布了新的文献求助10
2秒前
追寻的夏波应助清秀皓轩采纳,获得10
2秒前
老艺人发布了新的文献求助10
3秒前
别闹闹发布了新的文献求助10
3秒前
ccc完成签到,获得积分10
3秒前
勤奋惜寒完成签到 ,获得积分10
3秒前
dounai发布了新的文献求助30
4秒前
Violazheng228发布了新的文献求助10
4秒前
舒舒陈发布了新的文献求助10
4秒前
夏远航发布了新的文献求助10
5秒前
材料人一枚给材料人一枚的求助进行了留言
5秒前
5秒前
6秒前
Ava应助指沙采纳,获得10
6秒前
6秒前
6秒前
着急毕业的干饭人完成签到,获得积分10
7秒前
电磁鳄完成签到,获得积分10
7秒前
开拖拉机的芍药完成签到 ,获得积分10
7秒前
活泼的似狮完成签到,获得积分10
7秒前
8秒前
搜集达人应助2号采纳,获得10
8秒前
热爱生活完成签到,获得积分10
9秒前
暮色晚钟完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
100完成签到,获得积分10
9秒前
失眠语梦完成签到,获得积分10
10秒前
自然紫山发布了新的文献求助10
10秒前
10秒前
羊羊完成签到,获得积分10
10秒前
10秒前
10秒前
丽丽呀完成签到,获得积分10
11秒前
刘刘大顺完成签到,获得积分10
11秒前
知止完成签到,获得积分10
11秒前
李爱国应助Peth采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727988
求助须知:如何正确求助?哪些是违规求助? 5310720
关于积分的说明 15312703
捐赠科研通 4875267
什么是DOI,文献DOI怎么找? 2618674
邀请新用户注册赠送积分活动 1568332
关于科研通互助平台的介绍 1524966