Deep Learning to Estimate Biological Age From Chest Radiographs

医学 胸片 年龄调整 置信区间 危险系数 射线照相术 生物年龄 深度学习 人工智能 内科学 放射科 外科 老年学 流行病学
作者
Vineet K. Raghu,Jakob Weiss,Udo Hoffmann,Hugo J.W.L. Aerts,Michael T. Lu
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:14 (11): 2226-2236 被引量:5
标识
DOI:10.1016/j.jcmg.2021.01.008
摘要

The goal of this study was to assess whether a deep learning estimate of age from a chest radiograph image (CXR-Age) can predict longevity beyond chronological age. Chronological age is an imperfect measure of longevity. Biological age, a measure of overall health, may improve personalized care. This paper proposes a new way to estimate biological age using a convolutional neural network that takes as input a CXR image and outputs a chest x-ray age (in years) as a measure of long-term mortality risk. CXR-Age was developed using CXR from 116,035 individuals and validated in 2 held-out testing sets: 1) 75% of the CXR arm of PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial) (N = 40,967); and 2) the CXR arm of NLST (National Lung Screening Trial) (N = 5,414). CXR-Age was compared to chronological age and a multivariable regression model of chronological age, risk factors, and radiograph findings to predict all-cause and cardiovascular mortality with a maximum 23 years and 13 years of follow-up, respectively. The primary outcome was observed mortality; results are provided for the testing datasets only. In the PLCO testing dataset, a 5-year increase in CXR-Age carried a higher risk of all-cause mortality than a 5-year increase in chronological age (CXR-Age hazard ratio [HR]: 2.26 [95% confidence interval (CI): 2.24 to 2.29] vs. chronological age HR: 1.77 [95% CI: 1.75 to 1.78]; p < 0.001). A similar pattern was found for cardiovascular mortality (CXR-Age cause-specific HR: 2.45 per 5 years [95% CI: 2.34 to 2.56] vs. chronological age HR: 1.82 per 5 years [95% CI: 1.74 to 1.90]). Similar results were seen for both outcomes in the NLST external testing dataset. Adding CXR-Age to the multivariable model resulted in significant improvements for predicting both outcomes in both testing datasets (p < 0.001 for all comparisons). Based on a CXR image, CXR-Age predicted long-term all-cause and cardiovascular mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_RLN0vZ发布了新的文献求助10
刚刚
刚刚
刚刚
神勇的雅香应助001采纳,获得10
1秒前
研友_V8RDYn完成签到,获得积分10
1秒前
zzznznnn发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
FFFFFFF应助晓军采纳,获得10
4秒前
wanci应助艺玲采纳,获得10
4秒前
jfc完成签到 ,获得积分10
4秒前
香蕉觅云应助月白采纳,获得10
4秒前
思源应助mmx采纳,获得10
4秒前
Diaory2023完成签到 ,获得积分0
4秒前
雪小岳完成签到,获得积分10
5秒前
李小明完成签到,获得积分10
5秒前
5秒前
白小白发布了新的文献求助10
6秒前
thchiang发布了新的文献求助30
6秒前
Crsip关注了科研通微信公众号
6秒前
乐乐应助camellia采纳,获得10
7秒前
小二郎应助无情的白桃采纳,获得10
7秒前
7秒前
研友_Zb1rln完成签到,获得积分10
9秒前
健身boy完成签到,获得积分10
9秒前
盛京烟雨行完成签到 ,获得积分10
9秒前
9秒前
心灵美的大山完成签到,获得积分10
9秒前
9秒前
yuan发布了新的文献求助10
10秒前
诚心八宝粥完成签到,获得积分10
10秒前
11秒前
艺术家完成签到 ,获得积分10
12秒前
12秒前
12秒前
DreamMaker完成签到 ,获得积分10
12秒前
自由完成签到 ,获得积分10
12秒前
请勿继续发布了新的文献求助10
12秒前
聪明宛菡完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759