Deep Learning to Estimate Biological Age From Chest Radiographs

医学 胸片 年龄调整 置信区间 危险系数 射线照相术 生物年龄 深度学习 人工智能 内科学 放射科 外科 老年学 流行病学
作者
Vineet K. Raghu,Jakob Weiss,Udo Hoffmann,Hugo J.W.L. Aerts,Michael T. Lu
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:14 (11): 2226-2236 被引量:5
标识
DOI:10.1016/j.jcmg.2021.01.008
摘要

The goal of this study was to assess whether a deep learning estimate of age from a chest radiograph image (CXR-Age) can predict longevity beyond chronological age. Chronological age is an imperfect measure of longevity. Biological age, a measure of overall health, may improve personalized care. This paper proposes a new way to estimate biological age using a convolutional neural network that takes as input a CXR image and outputs a chest x-ray age (in years) as a measure of long-term mortality risk. CXR-Age was developed using CXR from 116,035 individuals and validated in 2 held-out testing sets: 1) 75% of the CXR arm of PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial) (N = 40,967); and 2) the CXR arm of NLST (National Lung Screening Trial) (N = 5,414). CXR-Age was compared to chronological age and a multivariable regression model of chronological age, risk factors, and radiograph findings to predict all-cause and cardiovascular mortality with a maximum 23 years and 13 years of follow-up, respectively. The primary outcome was observed mortality; results are provided for the testing datasets only. In the PLCO testing dataset, a 5-year increase in CXR-Age carried a higher risk of all-cause mortality than a 5-year increase in chronological age (CXR-Age hazard ratio [HR]: 2.26 [95% confidence interval (CI): 2.24 to 2.29] vs. chronological age HR: 1.77 [95% CI: 1.75 to 1.78]; p < 0.001). A similar pattern was found for cardiovascular mortality (CXR-Age cause-specific HR: 2.45 per 5 years [95% CI: 2.34 to 2.56] vs. chronological age HR: 1.82 per 5 years [95% CI: 1.74 to 1.90]). Similar results were seen for both outcomes in the NLST external testing dataset. Adding CXR-Age to the multivariable model resulted in significant improvements for predicting both outcomes in both testing datasets (p < 0.001 for all comparisons). Based on a CXR image, CXR-Age predicted long-term all-cause and cardiovascular mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
山隐隐水迢迢完成签到,获得积分0
1秒前
1秒前
1秒前
飘逸鑫完成签到,获得积分10
1秒前
2秒前
2秒前
陶1122发布了新的文献求助10
3秒前
3秒前
12121发布了新的文献求助10
3秒前
4秒前
英姑应助涟涵采纳,获得20
4秒前
w婷发布了新的文献求助10
4秒前
5秒前
Rondab应助心杨采纳,获得10
5秒前
FashionBoy应助AAA111122采纳,获得10
5秒前
wangliang0329发布了新的文献求助10
6秒前
6秒前
7秒前
打打应助yuyu采纳,获得10
7秒前
SSSYYY发布了新的文献求助10
7秒前
文静煜城发布了新的文献求助10
7秒前
肥肠的枣糕啊完成签到,获得积分10
8秒前
贰鸟应助蘑菇采纳,获得10
8秒前
QIQI完成签到,获得积分10
8秒前
9秒前
宋宋发布了新的文献求助10
9秒前
纯真新筠完成签到,获得积分10
9秒前
李健应助高高哑铃采纳,获得10
9秒前
sss完成签到,获得积分10
10秒前
谓风完成签到,获得积分10
11秒前
辛勤的苡完成签到,获得积分10
11秒前
11秒前
泥撑完成签到,获得积分10
11秒前
小汪同学完成签到,获得积分10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771