异质结
材料科学
光催化
兴奋剂
氮化碳
光催化分解水
氢
分解水
纳米技术
氮化物
化学工程
光电子学
碳纤维
催化作用
化学
图层(电子)
复合数
复合材料
有机化学
工程类
生物化学
作者
Daming Zhao,Yiqing Wang,Chung‐Li Dong,Yucheng Huang,Jie Chen,Fei Xue,Shaohua Shen,Liejin Guo
出处
期刊:Nature Energy
[Springer Nature]
日期:2021-03-22
卷期号:6 (4): 388-397
被引量:958
标识
DOI:10.1038/s41560-021-00795-9
摘要
Photocatalytic overall water splitting can be achieved using Z-scheme systems that mimic natural photosynthesis by combining dissimilar semiconductors in series. However, coupling well-suited H2- and O2-evolving components remains challenging. Here, we fabricate a Z-scheme system for photocatalytic overall water splitting based on boron-doped, nitrogen-deficient carbon nitride two-dimensional (2D) nanosheets. We prepare ultrathin carbon nitride nanosheets with varying levels of boron dopants and nitrogen defects, which leads to nanosheets that can act as either H2- or O2-evolving photocatalysts. Using an electrostatic self-assembly strategy, the nanosheets are coupled to obtain a 2D/2D polymeric heterostructure. Owing to their ultrathin nanostructures, strong interfacial interaction and staggered band alignment, a Z-scheme route for efficient charge-carrier separation and transfer is realized. The obtained heterostructure achieves stoichiometric H2 and O2 evolution in the presence of Pt and Co(OH)2 co-catalysts, and the solar-to-hydrogen efficiency reaches 1.16% under one-sun illumination. Splitting water using suspensions of particulate carbon nitride-based photocatalysts may be a cheap way to produce hydrogen, but efficiencies have remained low. Now, Shen and colleagues use doped carbon nitride-based Z-scheme heterostructures to split water with a solar-to-hydrogen efficiency of 1.1% in the presence of metal-based co-catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI