Development and assessment of machine learning models for predicting recurrence risk after endovascular treatment in patients with intracranial aneurysms

医学 血管内治疗 神经外科 风险评估 动脉瘤 放射科 外科 计算机安全 计算机科学
作者
Shiteng Lin,Yang Zou,Jue Hu,Xiang Lan,LeHeng Guo,Xinping Lin,Daizun Zou,Xiaoping Gao,Hui Liang,Jianjun Zou,Zhihong Zhao,Xiaoming Dai
出处
期刊:Neurosurgical Review [Springer Nature]
卷期号:45 (2): 1521-1531 被引量:10
标识
DOI:10.1007/s10143-021-01665-4
摘要

Intracranial aneurysms (IAs) remain a major public health concern and endovascular treatment (EVT) has become a major tool for managing IAs. However, the recurrence rate of IAs after EVT is relatively high, which may lead to the risk for aneurysm re-rupture and re-bleed. Thus, we aimed to develop and assess prediction models based on machine learning (ML) algorithms to predict recurrence risk among patients with IAs after EVT in 6 months. Patient population included patients with IAs after EVT between January 2016 and August 2019 in Hunan Provincial People's Hospital, and an adaptive synthetic (ADASYN) sampling approach was applied for the entire imbalanced dataset. We developed five ML models and assessed the models. In addition, we used SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanation (LIME) algorithms to determine the importance of the selected features and interpret the ML models. A total of 425 IAs were enrolled into this study, and 66 (15.5%) of which recurred in 6 months. Among the five ML models, gradient boosting decision tree (GBDT) model performed best. The area under curve (AUC) of the GBDT model on the testing set was 0.842 (sensitivity: 81.2%; specificity: 70.4%). Our study firstly demonstrated that ML-based models can serve as a reliable tool for predicting recurrence risk in patients with IAs after EVT in 6 months, and the GBDT model showed the optimal prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LXOJq8完成签到,获得积分10
1秒前
呆萌沛蓝发布了新的文献求助10
1秒前
yangyang发布了新的文献求助10
1秒前
Godspeed发布了新的文献求助10
1秒前
2秒前
forge发布了新的文献求助10
2秒前
moon完成签到,获得积分10
2秒前
taster完成签到,获得积分10
2秒前
巫马无施发布了新的文献求助10
3秒前
5秒前
英姑应助translocator采纳,获得10
5秒前
shaoming发布了新的文献求助10
7秒前
7秒前
7秒前
lzw123456发布了新的文献求助10
8秒前
华仔应助Hammerdai采纳,获得10
8秒前
xzn1123应助西班牙拿铁采纳,获得10
8秒前
赘婿应助搞科研的小郭采纳,获得10
9秒前
ardejiang发布了新的文献求助10
9秒前
科研通AI2S应助未知采纳,获得10
12秒前
尤水绿发布了新的文献求助10
13秒前
zhang完成签到,获得积分10
14秒前
15秒前
开心最重要完成签到,获得积分10
17秒前
小二郎应助shine采纳,获得10
18秒前
活泼溪流发布了新的文献求助10
19秒前
深情安青应助uwasa采纳,获得10
20秒前
所所应助倾听采纳,获得10
20秒前
尊敬乐蕊完成签到,获得积分10
21秒前
21秒前
明亮寻绿发布了新的文献求助10
21秒前
时尚初柳应助科研毛毛虫采纳,获得10
21秒前
Yifan2024应助neechine采纳,获得10
22秒前
万能图书馆应助嘀嘀嘀采纳,获得10
22秒前
钮南琴完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
哈哈哈哈完成签到,获得积分20
26秒前
26秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390117
求助须知:如何正确求助?哪些是违规求助? 3001891
关于积分的说明 8800388
捐赠科研通 2688461
什么是DOI,文献DOI怎么找? 1472612
科研通“疑难数据库(出版商)”最低求助积分说明 681011
邀请新用户注册赠送积分活动 673707