Computational molecular spectroscopy

可解释性 计算机科学 领域(数学) 光学(聚焦) 表征(材料科学) 计算模型 材料科学 生化工程 纳米技术 人工智能 物理 数学 工程类 光学 纯数学
作者
Vincenzo Barone,Silvia Alessandrini,Małgorzata Biczysko,James R. Cheeseman,David C. Clary,Anne B. McCoy,Ryan J. DiRisio,Frank Neese,Mattia Melosso,Cristina Puzzarini
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:1 (1) 被引量:348
标识
DOI:10.1038/s43586-021-00034-1
摘要

Spectroscopic techniques can probe molecular systems non-invasively and investigate their structure, properties and dynamics in different environments and physico-chemical conditions. Different spectroscopic techniques (spanning different ranges of the electromagnetic field) and their combination can lead to a more comprehensive picture of investigated systems. However, the growing sophistication of these experimental techniques makes it increasingly complex to interpret spectroscopic results without the help of computational chemistry. Computational molecular spectroscopy, born as a branch of quantum chemistry to provide predictions of spectroscopic properties and features, emerged as an independent and highly specialized field but has progressively evolved to become a general tool also employed by experimentally oriented researchers. In this Primer, we focus on the computational characterization of medium-sized molecular systems by means of different spectroscopic techniques. We first provide essential information about the characteristics, accuracy and limitations of the available computational approaches, and select examples to illustrate common trends and outcomes of general validity that can be used for modelling spectroscopic phenomena. We emphasize the need for estimating error bars and limitations, coupling accuracy with interpretability, touch upon data deposition and reproducibility issues, and discuss the results in terms of widely recognized chemical concepts. Puzzarini and colleagues explore the computational characterization of medium-sized molecular systems using different spectroscopic techniques. The Primer provides essential information about the characteristics, accuracy and limitations of current computational approaches used for modelling spectroscopic phenomena with a focus on estimating error bars, limitations and coupling interpretability to accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfu发布了新的文献求助10
刚刚
明理依云完成签到,获得积分10
刚刚
刚刚
1秒前
二世小卒完成签到 ,获得积分10
1秒前
和谐乌龟完成签到,获得积分10
2秒前
阳尧完成签到,获得积分10
2秒前
帅气惜霜发布了新的文献求助10
2秒前
2秒前
kkkklo发布了新的文献求助30
4秒前
传奇3应助润润轩轩采纳,获得10
4秒前
4秒前
6秒前
和谐乌龟发布了新的文献求助10
6秒前
zZ完成签到,获得积分10
6秒前
科研小白完成签到,获得积分10
6秒前
LYY发布了新的文献求助10
7秒前
wangfu完成签到,获得积分10
7秒前
ding应助Dddd采纳,获得10
8秒前
yin发布了新的文献求助10
8秒前
大模型应助张张采纳,获得10
8秒前
Akim应助吾问无为谓采纳,获得10
9秒前
9秒前
神勇的冰姬完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
tony完成签到,获得积分10
12秒前
Uynaux发布了新的文献求助30
12秒前
SONG完成签到,获得积分10
12秒前
SYLH应助干秋白采纳,获得10
13秒前
13秒前
风雨1210发布了新的文献求助10
14秒前
文艺书雪完成签到 ,获得积分10
14秒前
独行侠完成签到,获得积分10
14秒前
15秒前
我测你码发布了新的文献求助10
15秒前
又要起名字完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794