Computational molecular spectroscopy

可解释性 计算机科学 领域(数学) 光学(聚焦) 表征(材料科学) 计算模型 材料科学 生化工程 纳米技术 人工智能 物理 数学 工程类 光学 纯数学
作者
Vincenzo Barone,Silvia Alessandrini,Małgorzata Biczysko,James R. Cheeseman,David C. Clary,Anne B. McCoy,Ryan J. DiRisio,Frank Neese,Mattia Melosso,Cristina Puzzarini
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:1 (1) 被引量:361
标识
DOI:10.1038/s43586-021-00034-1
摘要

Spectroscopic techniques can probe molecular systems non-invasively and investigate their structure, properties and dynamics in different environments and physico-chemical conditions. Different spectroscopic techniques (spanning different ranges of the electromagnetic field) and their combination can lead to a more comprehensive picture of investigated systems. However, the growing sophistication of these experimental techniques makes it increasingly complex to interpret spectroscopic results without the help of computational chemistry. Computational molecular spectroscopy, born as a branch of quantum chemistry to provide predictions of spectroscopic properties and features, emerged as an independent and highly specialized field but has progressively evolved to become a general tool also employed by experimentally oriented researchers. In this Primer, we focus on the computational characterization of medium-sized molecular systems by means of different spectroscopic techniques. We first provide essential information about the characteristics, accuracy and limitations of the available computational approaches, and select examples to illustrate common trends and outcomes of general validity that can be used for modelling spectroscopic phenomena. We emphasize the need for estimating error bars and limitations, coupling accuracy with interpretability, touch upon data deposition and reproducibility issues, and discuss the results in terms of widely recognized chemical concepts. Puzzarini and colleagues explore the computational characterization of medium-sized molecular systems using different spectroscopic techniques. The Primer provides essential information about the characteristics, accuracy and limitations of current computational approaches used for modelling spectroscopic phenomena with a focus on estimating error bars, limitations and coupling interpretability to accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助鹤轩采纳,获得10
刚刚
情怀应助花粉过敏采纳,获得10
刚刚
玩命的凝天完成签到,获得积分10
刚刚
3秒前
科研通AI6应助科研疯采纳,获得10
3秒前
bkagyin应助xf潇洒哥采纳,获得20
3秒前
4秒前
大男完成签到,获得积分10
5秒前
5秒前
6秒前
FF完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
9秒前
xiangwei发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
严明发布了新的文献求助10
12秒前
14秒前
浮游应助自然冥茗采纳,获得10
14秒前
花粉过敏发布了新的文献求助10
15秒前
脑洞疼应助犹豫晓啸采纳,获得10
16秒前
善学以致用应助张艺凡采纳,获得30
18秒前
一碗晚月完成签到,获得积分10
19秒前
y大哥略略略完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
英俊的铭应助y大哥略略略采纳,获得10
22秒前
22秒前
orixero应助minute采纳,获得10
22秒前
大力的宝川完成签到 ,获得积分10
22秒前
23秒前
23秒前
大道无痕发布了新的文献求助10
25秒前
科研通AI6应助程雯慧采纳,获得10
25秒前
25秒前
tian发布了新的文献求助10
27秒前
犹豫晓啸发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325