Spark-based parallel dynamic programming and particle swarm optimization via cloud computing for a large-scale reservoir system

SPARK(编程语言) 云计算 粒子群优化 计算机科学 并行计算 计算科学 光滑粒子流体力学 分布式计算 比例(比率) 操作系统 算法 物理 机械 程序设计语言 量子力学
作者
Yufei Ma,Ping‐an Zhong,Bin Xu,Feilin Zhu,Qingwen Lü,Han Wang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:598: 126444-126444 被引量:28
标识
DOI:10.1016/j.jhydrol.2021.126444
摘要

Abstract The joint optimal operation of a large-scale reservoir system is a complex optimization problem with high-dimensional, multi-stage, and nonlinear features. As the number of reservoirs and discrete states increase, the runtime of optimal operation model increases exponentially, leading to the phenomenon of “curse of dimensionality”. Traditional multi-core parallel computing can improve the efficiency to a certain extent, but it is difficult to expand and break through the hardware limitation, which is not suitable for the optimization of the large-scale reservoir system and its refined management. Different from the current literature about reservoir operations that focus on the comparisons of dynamic programming (DP) with particle swarm optimization (PSO) algorithm in serial mode, this paper pays emphasis on a comparison study of parallel DP with parallel PSO via cloud computing. This study proposes the spark-based parallel dynamic programming (SPDP) and spark-based parallel particle swarm optimization (SPPSO) methods via cloud computing. Taking the cascade eight-reservoir system in the Yuanshui basin in China as an example, simulation experiments are carried out for the comparison between SPDP and SPPSO in terms of parallel performance, precision, efficiency, and stability. The results are as follows: (1) The parallel performance of SPDP in the cloud environment is better than SPPSO. (2) Under the same runtime, the precision of SPDP is generally higher than that of SPPSO. (3) Setting the same precision, the runtime of SPPSO is on average 255.18% longer than SPDP, and it does not reach the precision of SPDP. (4) SPPSO has a fast convergence speed and the ability to jump out of the local optimal solution, but its precision increases by 0.41%, while the runtime increases by 229.55% with the increase of iterations. DP solves more accurately and efficiently than PSO via parallel cloud computing, which ensures the global search capability of the algorithm. Moreover, cloud computing is flexible, economical, and safe, with high practical value and application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静静给静静的求助进行了留言
刚刚
1秒前
dzdzn发布了新的文献求助10
1秒前
1秒前
Stanley发布了新的文献求助10
2秒前
鸣笛应助勤奋的如松采纳,获得20
2秒前
2秒前
WentingRao完成签到,获得积分10
2秒前
完美世界应助qwa采纳,获得10
2秒前
2秒前
ljhy完成签到,获得积分20
2秒前
自然的凝冬完成签到,获得积分10
2秒前
2秒前
2秒前
Chow发布了新的文献求助10
4秒前
4秒前
爱听歌的小霸王完成签到,获得积分10
4秒前
小七完成签到,获得积分10
5秒前
酷波er应助聪明的寄灵采纳,获得10
5秒前
zh发布了新的文献求助10
5秒前
ljhy发布了新的文献求助10
5秒前
独孤幻月96应助顾笑阳采纳,获得10
5秒前
个性的紫菜应助何休槊采纳,获得20
5秒前
6秒前
VDC应助不上课不行采纳,获得30
6秒前
6秒前
黑月完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
栗栗子完成签到,获得积分10
6秒前
友好的以旋完成签到 ,获得积分10
7秒前
7秒前
7秒前
xss发布了新的文献求助20
8秒前
8秒前
8秒前
PPD发布了新的文献求助10
9秒前
Stanley完成签到,获得积分20
9秒前
索隆完成签到,获得积分10
9秒前
卡卡584完成签到,获得积分10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482