Spark-based parallel dynamic programming and particle swarm optimization via cloud computing for a large-scale reservoir system

SPARK(编程语言) 云计算 粒子群优化 计算机科学 并行计算 计算科学 光滑粒子流体力学 分布式计算 比例(比率) 操作系统 算法 物理 机械 程序设计语言 量子力学
作者
Yufei Ma,Ping‐an Zhong,Bin Xu,Feilin Zhu,Qingwen Lü,Han Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:598: 126444-126444 被引量:35
标识
DOI:10.1016/j.jhydrol.2021.126444
摘要

Abstract The joint optimal operation of a large-scale reservoir system is a complex optimization problem with high-dimensional, multi-stage, and nonlinear features. As the number of reservoirs and discrete states increase, the runtime of optimal operation model increases exponentially, leading to the phenomenon of “curse of dimensionality”. Traditional multi-core parallel computing can improve the efficiency to a certain extent, but it is difficult to expand and break through the hardware limitation, which is not suitable for the optimization of the large-scale reservoir system and its refined management. Different from the current literature about reservoir operations that focus on the comparisons of dynamic programming (DP) with particle swarm optimization (PSO) algorithm in serial mode, this paper pays emphasis on a comparison study of parallel DP with parallel PSO via cloud computing. This study proposes the spark-based parallel dynamic programming (SPDP) and spark-based parallel particle swarm optimization (SPPSO) methods via cloud computing. Taking the cascade eight-reservoir system in the Yuanshui basin in China as an example, simulation experiments are carried out for the comparison between SPDP and SPPSO in terms of parallel performance, precision, efficiency, and stability. The results are as follows: (1) The parallel performance of SPDP in the cloud environment is better than SPPSO. (2) Under the same runtime, the precision of SPDP is generally higher than that of SPPSO. (3) Setting the same precision, the runtime of SPPSO is on average 255.18% longer than SPDP, and it does not reach the precision of SPDP. (4) SPPSO has a fast convergence speed and the ability to jump out of the local optimal solution, but its precision increases by 0.41%, while the runtime increases by 229.55% with the increase of iterations. DP solves more accurately and efficiently than PSO via parallel cloud computing, which ensures the global search capability of the algorithm. Moreover, cloud computing is flexible, economical, and safe, with high practical value and application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘西西发布了新的文献求助10
1秒前
rr发布了新的文献求助20
1秒前
科学修仙完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
超级欧皇的好宝宝完成签到 ,获得积分10
2秒前
yydd发布了新的文献求助10
2秒前
3秒前
wu发布了新的文献求助10
3秒前
4秒前
科学修仙发布了新的文献求助10
4秒前
SciGPT应助清脆雪糕采纳,获得10
5秒前
所所应助ceeray23采纳,获得20
5秒前
方賢完成签到,获得积分10
7秒前
一颗葡萄完成签到 ,获得积分10
7秒前
打打应助李博士采纳,获得30
8秒前
陈琛发布了新的文献求助10
8秒前
冰糖葫芦完成签到,获得积分20
8秒前
Fa发布了新的文献求助10
9秒前
摸鱼鱼发布了新的文献求助10
9秒前
李顺利发布了新的文献求助10
10秒前
10秒前
YXM1完成签到,获得积分10
10秒前
MissZhang完成签到,获得积分10
10秒前
10秒前
11秒前
Owen应助红红火火恍恍惚惚采纳,获得10
11秒前
爱听歌的老四完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
乌拉拉完成签到,获得积分10
14秒前
14秒前
15秒前
哈密瓜完成签到,获得积分10
15秒前
transition发布了新的文献求助30
15秒前
zhao完成签到,获得积分10
15秒前
YUYUYU完成签到,获得积分10
16秒前
科研通AI6应助超帅的薯片采纳,获得10
16秒前
清脆雪糕发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222