Spark-based parallel dynamic programming and particle swarm optimization via cloud computing for a large-scale reservoir system

SPARK(编程语言) 云计算 粒子群优化 计算机科学 并行计算 计算科学 光滑粒子流体力学 分布式计算 比例(比率) 操作系统 算法 物理 机械 程序设计语言 量子力学
作者
Yufei Ma,Ping‐an Zhong,Bin Xu,Feilin Zhu,Qingwen Lü,Han Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:598: 126444-126444 被引量:28
标识
DOI:10.1016/j.jhydrol.2021.126444
摘要

Abstract The joint optimal operation of a large-scale reservoir system is a complex optimization problem with high-dimensional, multi-stage, and nonlinear features. As the number of reservoirs and discrete states increase, the runtime of optimal operation model increases exponentially, leading to the phenomenon of “curse of dimensionality”. Traditional multi-core parallel computing can improve the efficiency to a certain extent, but it is difficult to expand and break through the hardware limitation, which is not suitable for the optimization of the large-scale reservoir system and its refined management. Different from the current literature about reservoir operations that focus on the comparisons of dynamic programming (DP) with particle swarm optimization (PSO) algorithm in serial mode, this paper pays emphasis on a comparison study of parallel DP with parallel PSO via cloud computing. This study proposes the spark-based parallel dynamic programming (SPDP) and spark-based parallel particle swarm optimization (SPPSO) methods via cloud computing. Taking the cascade eight-reservoir system in the Yuanshui basin in China as an example, simulation experiments are carried out for the comparison between SPDP and SPPSO in terms of parallel performance, precision, efficiency, and stability. The results are as follows: (1) The parallel performance of SPDP in the cloud environment is better than SPPSO. (2) Under the same runtime, the precision of SPDP is generally higher than that of SPPSO. (3) Setting the same precision, the runtime of SPPSO is on average 255.18% longer than SPDP, and it does not reach the precision of SPDP. (4) SPPSO has a fast convergence speed and the ability to jump out of the local optimal solution, but its precision increases by 0.41%, while the runtime increases by 229.55% with the increase of iterations. DP solves more accurately and efficiently than PSO via parallel cloud computing, which ensures the global search capability of the algorithm. Moreover, cloud computing is flexible, economical, and safe, with high practical value and application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
面圈发布了新的文献求助10
刚刚
doc发布了新的文献求助10
1秒前
NexusExplorer应助吃吃货采纳,获得10
1秒前
zzy发布了新的文献求助10
1秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
zzz应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
壮观的黄豆完成签到 ,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
yyyq0721发布了新的文献求助10
4秒前
5秒前
秋雅发布了新的文献求助10
5秒前
5秒前
7秒前
cys发布了新的文献求助10
8秒前
面圈发布了新的文献求助10
8秒前
ubiquitin发布了新的文献求助10
9秒前
wanci应助文艺安青采纳,获得10
10秒前
华仔应助千寻采纳,获得10
11秒前
11秒前
11秒前
12秒前
loveananya完成签到,获得积分10
12秒前
12秒前
充电宝应助您疼肚采纳,获得10
12秒前
随影相伴完成签到 ,获得积分10
12秒前
Survivor完成签到,获得积分10
13秒前
科研通AI2S应助Sonny采纳,获得10
13秒前
科研通AI2S应助秋雅采纳,获得10
14秒前
ubiquitin完成签到,获得积分10
14秒前
吃吃货发布了新的文献求助10
15秒前
wzwz发布了新的文献求助10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233254
求助须知:如何正确求助?哪些是违规求助? 2879834
关于积分的说明 8212896
捐赠科研通 2547289
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647683
邀请新用户注册赠送积分活动 623115