已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation

冷启动(汽车) 计算机科学 推论 编码器 机器学习 任务(项目管理) 情报检索 图形 语义学(计算机科学) 人工智能 推荐系统 数据挖掘 理论计算机科学 工程类 航空航天工程 经济 管理 程序设计语言 操作系统
作者
Jiawei Zheng,Qianli Ma,Hao Gu,Zhenjing Zheng
出处
期刊:Knowledge Discovery and Data Mining 被引量:30
标识
DOI:10.1145/3447548.3467427
摘要

Cold-start recommendation is a challenging problem due to the lack of user-item interactions. Recently, heterogeneous information network~(HIN)-based recommendation methods use rich auxiliary information to enhance users and items' connections, helping alleviate the cold-start problem. Despite progress, most existing methods model HINs under traditional supervised learning settings, ignoring the gaps between training and inference procedures in cold-start scenarios. In this paper, we regard cold-start recommendation as a missing data problem where some user-item interaction data are missing. Inspired by denoising auto-encoders that train a model to reconstruct the input from its corrupted version, we propose a novel model called Multi-view Denoising Graph Auto-Encoders~(MvDGAE) on HINS. Specifically, we first extract multifaceted meaningful semantics on HINs as multi-views for both users and items, effectively enhancing user/item relationships on different aspects. Then we conduct the training procedure by randomly dropping out some user-item interactions in the encoder while forcing the decoder to use these limited views to recover the full views, including the missing ones. In this way, the complementary representations for both users and items are more informative and robust to adjust to cold-start scenarios. Moreover, the decoder's reconstruction goals are multi-view user-user and item-item relationship graphs rather than the original input graphs, which make the features of similar users (or items) in the meta-paths closer together. Finally, we adopt a Bayesian task weight learner to balance multi-view graph reconstruction objectives automatically. Extensive experiments on both public benchmark datasets and a large-scale industry dataset WeChat Channel demonstrate that MvDGAE significantly outperforms the state-of-the-art recommendation models in various cold-start scenarios. The case studies also illustrate that MvDGAE has potentially good interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
裘香芦发布了新的文献求助10
3秒前
李健的小迷弟应助七安采纳,获得10
5秒前
6秒前
6秒前
7秒前
12erf完成签到,获得积分10
8秒前
小刘医生发布了新的文献求助10
9秒前
11秒前
nn发布了新的文献求助10
12秒前
深情安青应助箴言Julius采纳,获得10
12秒前
张张发布了新的文献求助10
13秒前
15秒前
浮游应助麻瓜采纳,获得10
16秒前
浮游应助麻瓜采纳,获得10
16秒前
Ava应助1234采纳,获得10
18秒前
cx发布了新的文献求助10
18秒前
20秒前
嘿嘿应助喵喵采纳,获得10
20秒前
fly发布了新的文献求助10
20秒前
SciGPT应助文静修杰采纳,获得10
21秒前
21秒前
streamerz完成签到,获得积分10
22秒前
dadadada发布了新的文献求助10
23秒前
隐形曼青应助张张采纳,获得10
24秒前
24秒前
25秒前
Alex应助12erf采纳,获得10
25秒前
bkagyin应助我爱学习采纳,获得10
25秒前
仲秋二三应助HonestLiang采纳,获得10
26秒前
刘小蕊发布了新的文献求助20
27秒前
ggp完成签到,获得积分0
27秒前
共享精神应助ssss采纳,获得10
27秒前
今后应助dongdong采纳,获得10
27秒前
29秒前
31秒前
凌奕添发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355792
求助须知:如何正确求助?哪些是违规求助? 4487641
关于积分的说明 13970761
捐赠科研通 4388399
什么是DOI,文献DOI怎么找? 2411058
邀请新用户注册赠送积分活动 1403632
关于科研通互助平台的介绍 1377189