Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation

冷启动(汽车) 计算机科学 推论 编码器 机器学习 任务(项目管理) 情报检索 图形 语义学(计算机科学) 人工智能 推荐系统 数据挖掘 理论计算机科学 工程类 航空航天工程 经济 管理 程序设计语言 操作系统
作者
Jiawei Zheng,Qianli Ma,Hao Gu,Zhenjing Zheng
出处
期刊:Knowledge Discovery and Data Mining 被引量:30
标识
DOI:10.1145/3447548.3467427
摘要

Cold-start recommendation is a challenging problem due to the lack of user-item interactions. Recently, heterogeneous information network~(HIN)-based recommendation methods use rich auxiliary information to enhance users and items' connections, helping alleviate the cold-start problem. Despite progress, most existing methods model HINs under traditional supervised learning settings, ignoring the gaps between training and inference procedures in cold-start scenarios. In this paper, we regard cold-start recommendation as a missing data problem where some user-item interaction data are missing. Inspired by denoising auto-encoders that train a model to reconstruct the input from its corrupted version, we propose a novel model called Multi-view Denoising Graph Auto-Encoders~(MvDGAE) on HINS. Specifically, we first extract multifaceted meaningful semantics on HINs as multi-views for both users and items, effectively enhancing user/item relationships on different aspects. Then we conduct the training procedure by randomly dropping out some user-item interactions in the encoder while forcing the decoder to use these limited views to recover the full views, including the missing ones. In this way, the complementary representations for both users and items are more informative and robust to adjust to cold-start scenarios. Moreover, the decoder's reconstruction goals are multi-view user-user and item-item relationship graphs rather than the original input graphs, which make the features of similar users (or items) in the meta-paths closer together. Finally, we adopt a Bayesian task weight learner to balance multi-view graph reconstruction objectives automatically. Extensive experiments on both public benchmark datasets and a large-scale industry dataset WeChat Channel demonstrate that MvDGAE significantly outperforms the state-of-the-art recommendation models in various cold-start scenarios. The case studies also illustrate that MvDGAE has potentially good interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺旺旺发布了新的文献求助10
刚刚
1MENINA1完成签到 ,获得积分10
刚刚
SJ完成签到,获得积分10
刚刚
刚刚
zb发布了新的文献求助10
1秒前
小烦完成签到 ,获得积分10
1秒前
林妹妹完成签到,获得积分10
1秒前
1秒前
芳芳子完成签到 ,获得积分10
2秒前
会游泳的猪完成签到,获得积分10
2秒前
小郭不洗锅完成签到,获得积分10
3秒前
LYL完成签到,获得积分10
3秒前
月亮代表我的心完成签到,获得积分10
3秒前
景然完成签到,获得积分10
3秒前
李君然完成签到,获得积分10
3秒前
吕小布完成签到,获得积分10
4秒前
4秒前
anan完成签到 ,获得积分10
4秒前
红丽阿妹完成签到,获得积分10
4秒前
沉静WT完成签到 ,获得积分10
4秒前
牟翎完成签到,获得积分10
5秒前
千秋完成签到 ,获得积分10
5秒前
是莉莉娅完成签到,获得积分10
6秒前
小明完成签到,获得积分10
6秒前
脑洞疼应助今晚吃马铃薯采纳,获得10
6秒前
xbchen完成签到,获得积分10
6秒前
旺旺旺完成签到,获得积分10
7秒前
XLHFN丶发布了新的文献求助80
7秒前
8秒前
9秒前
9秒前
zhou完成签到,获得积分10
9秒前
10秒前
思源应助yxdeng采纳,获得10
10秒前
白若可依发布了新的文献求助10
10秒前
biu我你开心吗完成签到,获得积分10
10秒前
11秒前
遇见飞儿完成签到,获得积分0
11秒前
李某某完成签到,获得积分10
11秒前
12秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158796
求助须知:如何正确求助?哪些是违规求助? 2810007
关于积分的说明 7885064
捐赠科研通 2468748
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012