Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation

冷启动(汽车) 计算机科学 推论 编码器 机器学习 任务(项目管理) 情报检索 图形 语义学(计算机科学) 人工智能 推荐系统 数据挖掘 理论计算机科学 工程类 航空航天工程 经济 管理 程序设计语言 操作系统
作者
Jiawei Zheng,Qianli Ma,Hao Gu,Zhenjing Zheng
出处
期刊:Knowledge Discovery and Data Mining 被引量:30
标识
DOI:10.1145/3447548.3467427
摘要

Cold-start recommendation is a challenging problem due to the lack of user-item interactions. Recently, heterogeneous information network~(HIN)-based recommendation methods use rich auxiliary information to enhance users and items' connections, helping alleviate the cold-start problem. Despite progress, most existing methods model HINs under traditional supervised learning settings, ignoring the gaps between training and inference procedures in cold-start scenarios. In this paper, we regard cold-start recommendation as a missing data problem where some user-item interaction data are missing. Inspired by denoising auto-encoders that train a model to reconstruct the input from its corrupted version, we propose a novel model called Multi-view Denoising Graph Auto-Encoders~(MvDGAE) on HINS. Specifically, we first extract multifaceted meaningful semantics on HINs as multi-views for both users and items, effectively enhancing user/item relationships on different aspects. Then we conduct the training procedure by randomly dropping out some user-item interactions in the encoder while forcing the decoder to use these limited views to recover the full views, including the missing ones. In this way, the complementary representations for both users and items are more informative and robust to adjust to cold-start scenarios. Moreover, the decoder's reconstruction goals are multi-view user-user and item-item relationship graphs rather than the original input graphs, which make the features of similar users (or items) in the meta-paths closer together. Finally, we adopt a Bayesian task weight learner to balance multi-view graph reconstruction objectives automatically. Extensive experiments on both public benchmark datasets and a large-scale industry dataset WeChat Channel demonstrate that MvDGAE significantly outperforms the state-of-the-art recommendation models in various cold-start scenarios. The case studies also illustrate that MvDGAE has potentially good interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Sunny采纳,获得30
刚刚
bububusbu完成签到,获得积分10
刚刚
还行啊完成签到,获得积分10
1秒前
追寻化蛹完成签到,获得积分10
1秒前
鱼湘完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
X10230发布了新的文献求助10
2秒前
Jun完成签到 ,获得积分10
2秒前
苒苒完成签到,获得积分10
3秒前
顺心的荠完成签到,获得积分10
4秒前
5秒前
nini发布了新的文献求助10
5秒前
憨憨完成签到 ,获得积分10
5秒前
寒冷的剑愁完成签到,获得积分20
6秒前
marc107完成签到,获得积分10
7秒前
suan完成签到,获得积分10
11秒前
小雨完成签到,获得积分10
13秒前
15秒前
小康发布了新的文献求助10
15秒前
苏丽妃完成签到 ,获得积分10
16秒前
roclie完成签到,获得积分10
18秒前
Annabelle完成签到,获得积分10
18秒前
酷波er应助tianqing采纳,获得10
19秒前
紫色的云完成签到,获得积分10
19秒前
一朵小鲜花儿完成签到,获得积分10
19秒前
无极微光应助答题不卡采纳,获得20
20秒前
科研通AI6应助zhuangbaobao采纳,获得10
20秒前
852应助X10230采纳,获得10
20秒前
田様应助X10230采纳,获得10
20秒前
慕青应助monster采纳,获得100
20秒前
孤独的问凝完成签到,获得积分10
20秒前
小寒发布了新的文献求助10
20秒前
成就的迎夏完成签到,获得积分10
21秒前
21秒前
坚强的妖妖完成签到,获得积分10
22秒前
22秒前
23秒前
田様应助王圈采纳,获得10
23秒前
科研狗完成签到,获得积分10
23秒前
G666发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539445
求助须知:如何正确求助?哪些是违规求助? 4626139
关于积分的说明 14598149
捐赠科研通 4567059
什么是DOI,文献DOI怎么找? 2503755
邀请新用户注册赠送积分活动 1481606
关于科研通互助平台的介绍 1453214