Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation

冷启动(汽车) 计算机科学 推论 编码器 机器学习 任务(项目管理) 情报检索 图形 语义学(计算机科学) 人工智能 推荐系统 数据挖掘 理论计算机科学 管理 工程类 经济 航空航天工程 操作系统 程序设计语言
作者
Jiawei Zheng,Qianli Ma,Hao Gu,Zhenjing Zheng
出处
期刊:Knowledge Discovery and Data Mining 被引量:30
标识
DOI:10.1145/3447548.3467427
摘要

Cold-start recommendation is a challenging problem due to the lack of user-item interactions. Recently, heterogeneous information network~(HIN)-based recommendation methods use rich auxiliary information to enhance users and items' connections, helping alleviate the cold-start problem. Despite progress, most existing methods model HINs under traditional supervised learning settings, ignoring the gaps between training and inference procedures in cold-start scenarios. In this paper, we regard cold-start recommendation as a missing data problem where some user-item interaction data are missing. Inspired by denoising auto-encoders that train a model to reconstruct the input from its corrupted version, we propose a novel model called Multi-view Denoising Graph Auto-Encoders~(MvDGAE) on HINS. Specifically, we first extract multifaceted meaningful semantics on HINs as multi-views for both users and items, effectively enhancing user/item relationships on different aspects. Then we conduct the training procedure by randomly dropping out some user-item interactions in the encoder while forcing the decoder to use these limited views to recover the full views, including the missing ones. In this way, the complementary representations for both users and items are more informative and robust to adjust to cold-start scenarios. Moreover, the decoder's reconstruction goals are multi-view user-user and item-item relationship graphs rather than the original input graphs, which make the features of similar users (or items) in the meta-paths closer together. Finally, we adopt a Bayesian task weight learner to balance multi-view graph reconstruction objectives automatically. Extensive experiments on both public benchmark datasets and a large-scale industry dataset WeChat Channel demonstrate that MvDGAE significantly outperforms the state-of-the-art recommendation models in various cold-start scenarios. The case studies also illustrate that MvDGAE has potentially good interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助超帅的冷菱采纳,获得30
刚刚
蓝天发布了新的文献求助10
1秒前
lhy完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
汉堡包应助高贵土豆采纳,获得10
2秒前
小黄发布了新的文献求助10
2秒前
轻松囧发布了新的文献求助10
3秒前
xing发布了新的文献求助10
4秒前
5秒前
5秒前
无限大门完成签到,获得积分10
5秒前
5秒前
隐形曼青应助Hmzh采纳,获得10
6秒前
6秒前
未道完成签到,获得积分10
6秒前
7秒前
Attention发布了新的文献求助10
7秒前
7秒前
科研通AI6应助azhou176采纳,获得10
7秒前
子车茗应助轻松的书琴采纳,获得30
7秒前
Teletubbies完成签到,获得积分10
7秒前
xiaoyan完成签到,获得积分10
7秒前
慧慧慧发布了新的文献求助10
8秒前
8秒前
你好完成签到,获得积分10
8秒前
Jasper应助amoresk采纳,获得10
8秒前
Lyzs发布了新的文献求助10
8秒前
wxbroute发布了新的文献求助10
8秒前
所所应助htzyc采纳,获得10
9秒前
小松鼠发布了新的文献求助10
10秒前
slimayw12发布了新的文献求助10
10秒前
10秒前
10秒前
wwewew发布了新的文献求助10
11秒前
脑洞疼应助十一采纳,获得30
11秒前
12秒前
单复天发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983