Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation

冷启动(汽车) 计算机科学 推论 编码器 机器学习 任务(项目管理) 情报检索 图形 语义学(计算机科学) 人工智能 推荐系统 数据挖掘 理论计算机科学 管理 工程类 经济 航空航天工程 操作系统 程序设计语言
作者
Jiawei Zheng,Qianli Ma,Hao Gu,Zhenjing Zheng
出处
期刊:Knowledge Discovery and Data Mining 被引量:30
标识
DOI:10.1145/3447548.3467427
摘要

Cold-start recommendation is a challenging problem due to the lack of user-item interactions. Recently, heterogeneous information network~(HIN)-based recommendation methods use rich auxiliary information to enhance users and items' connections, helping alleviate the cold-start problem. Despite progress, most existing methods model HINs under traditional supervised learning settings, ignoring the gaps between training and inference procedures in cold-start scenarios. In this paper, we regard cold-start recommendation as a missing data problem where some user-item interaction data are missing. Inspired by denoising auto-encoders that train a model to reconstruct the input from its corrupted version, we propose a novel model called Multi-view Denoising Graph Auto-Encoders~(MvDGAE) on HINS. Specifically, we first extract multifaceted meaningful semantics on HINs as multi-views for both users and items, effectively enhancing user/item relationships on different aspects. Then we conduct the training procedure by randomly dropping out some user-item interactions in the encoder while forcing the decoder to use these limited views to recover the full views, including the missing ones. In this way, the complementary representations for both users and items are more informative and robust to adjust to cold-start scenarios. Moreover, the decoder's reconstruction goals are multi-view user-user and item-item relationship graphs rather than the original input graphs, which make the features of similar users (or items) in the meta-paths closer together. Finally, we adopt a Bayesian task weight learner to balance multi-view graph reconstruction objectives automatically. Extensive experiments on both public benchmark datasets and a large-scale industry dataset WeChat Channel demonstrate that MvDGAE significantly outperforms the state-of-the-art recommendation models in various cold-start scenarios. The case studies also illustrate that MvDGAE has potentially good interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
刚刚
sqq发布了新的文献求助10
刚刚
周琦发布了新的文献求助10
1秒前
1秒前
1秒前
研友_nVNBVn完成签到,获得积分10
2秒前
李大白发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
科研通AI6.1应助ly采纳,获得10
4秒前
4秒前
充盈缺损完成签到,获得积分10
4秒前
脑洞疼应助菠菜采纳,获得10
5秒前
FashionBoy应助羊羊采纳,获得10
5秒前
5秒前
宋老三完成签到,获得积分10
5秒前
酒梅子发布了新的文献求助10
6秒前
OK不服气完成签到,获得积分10
6秒前
小蘑菇应助孤独的青文采纳,获得10
6秒前
7秒前
7秒前
CodeCraft应助sqq采纳,获得10
7秒前
冷酷成威发布了新的文献求助10
7秒前
英俊的铭应助mengli采纳,获得10
7秒前
阿昊完成签到,获得积分10
7秒前
7秒前
ff发布了新的文献求助10
7秒前
甜甜棒棒糖完成签到,获得积分20
8秒前
pluto应助三莫莫莫采纳,获得10
8秒前
ding应助HJJHJH采纳,获得10
8秒前
泥巴发布了新的文献求助10
8秒前
秋来渐有佳风月完成签到,获得积分10
8秒前
yllcjl发布了新的文献求助10
10秒前
asdasd0发布了新的文献求助10
10秒前
10秒前
温暖的鸿发布了新的文献求助10
10秒前
852应助yon采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751341
求助须知:如何正确求助?哪些是违规求助? 5467831
关于积分的说明 15369436
捐赠科研通 4890425
什么是DOI,文献DOI怎么找? 2629719
邀请新用户注册赠送积分活动 1577966
关于科研通互助平台的介绍 1534134