神经保护
小胶质细胞
药理学
信号转导
异丙酚
促炎细胞因子
基因沉默
炎症
生物
细胞生物学
免疫学
生物化学
基因
作者
Yuanyuan Hou,Xi Xiao,Wei Yu,Sihua Qi
摘要
Propofol is a known intravenous hypnotic drug used for induction and maintenance of sedation and general anesthesia. Emerging studies also reveal a neuroprotective effect of propofol in diverse diseases of neuronal injuries via modulating microglia activation. In this study, we aimed to uncover the downstream targets of propofol in this process.RNA sequencing analysis to identify genes implicated in the propofol-mediated neuroprotective effect. Quantitative real-time PCR, enzyme-linked immunosorbent assay, and Western blotting analysis were performed to analyze inflammatory gene expression, cytokine levels, and TGM2. BV2 cells and primary microglia were used for functional verification and mechanism studies.The multifunctional enzyme transglutaminase 2 (TGM2) was identified as a putative functional mediator of propofol. TGM2 was significantly upregulated in lipopolysaccharide- (LPS-) primed BV2 cells. Genetic silencing of TGM2 abolished LPS-induced microglial activation. Notably, gain-of-function experiments showed that the proinflammatory effects of TGM2 were dependent on its GTP binding activity instead of transamidase activity. Then, TGM2 was revealed to activate the NF-κB signaling pathway to facilitate microglial activation. Propofol can inhibit TGM2 expression and NF-κB signaling in BV2 cells and primary microglia. Ectopic expression of TGM2 or constitutively active IKKβ (CA-IKKβ) can compromise propofol-induced anti-inflammatory effects.Our findings suggest that TGM2-mediated activation of NF-κB signaling is an important mechanism in the propofol-induced neuroprotective effect that prevents microglial activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI