Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data

计算机科学 非线性系统 人工智能 堆积 因果模型 算法 模式识别(心理学) 数学 统计 核磁共振 量子力学 物理
作者
Kai-Cheng Chuang,Sreekrishna Ramakrishnapillai,Lydia A. Bazzano,Owen Carmichael
出处
期刊:Lecture Notes in Computer Science 卷期号:: 113-124 被引量:2
标识
DOI:10.1007/978-3-030-87586-2_12
摘要

Conditional Granger causality, based on functional magnetic resonance imaging (fMRI) time series signals, is the quantification of how strongly brain activity in a certain source brain region contributes to brain activity in a target brain region, independent of the contributions of other source regions. Current methods to solve this problem are either unable to model nonlinear relationships between source and target signals, unable to efficiently quantify time lags in source-target relationships, or require ad hoc parameter settings and post hoc calculations to assess conditional Granger causality. This paper proposes the use of deep stacking networks, with dilated convolutional neural networks (CNNs) as component parts, to address these challenges. The dilated CNNs nonlinearly model the target signal as a function of source signals. Conditional Granger causality is assessed in terms of how much modeling fidelity increases when additional dilated CNNs are added to the model. Time lags between source and target signals are estimated by analyzing estimated dilated CNN parameters. Our technique successfully estimated conditional Granger causality, did not spuriously identify false causal relationships, and correctly estimated time lags when applied to synthetic datasets and data generated by the STANCE fMRI simulator. When applied to real-world task fMRI data from an epidemiological cohort, the method identified biologically plausible causal relationships among regions known to be task-engaged and provided new information about causal structure among sources and targets that traditional single-source causal modeling could not provide. The proposed method is promising for modeling complex Granger causal relationships within brain networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贰鸟应助shuaishuyi采纳,获得10
刚刚
1秒前
酷波er应助loong采纳,获得10
2秒前
搜集达人应助肖珂采纳,获得10
3秒前
jinjinshan完成签到,获得积分10
4秒前
典雅的觅儿完成签到,获得积分10
4秒前
大喵发布了新的文献求助10
5秒前
5秒前
莉莉娅完成签到 ,获得积分10
7秒前
一丁雨完成签到,获得积分10
8秒前
8秒前
ll完成签到,获得积分10
9秒前
自由的梦露完成签到,获得积分10
9秒前
绿泡泡发布了新的文献求助10
10秒前
莉莉娅关注了科研通微信公众号
10秒前
10秒前
11秒前
J.关闭了J.文献求助
11秒前
TT木木发布了新的文献求助10
14秒前
孤独的大灰狼完成签到 ,获得积分10
15秒前
酷波er应助乂贰ZERO叁采纳,获得10
15秒前
17秒前
19秒前
TTTaT完成签到,获得积分10
19秒前
在水一方应助泥嚎采纳,获得10
19秒前
悟空应助开心岩采纳,获得50
20秒前
小龙完成签到,获得积分10
20秒前
mutongchen完成签到,获得积分10
20秒前
然大宝发布了新的文献求助10
21秒前
21秒前
麦子发布了新的文献求助10
22秒前
22秒前
22秒前
yufei完成签到,获得积分20
23秒前
wenbaka完成签到 ,获得积分10
23秒前
J.关闭了J.文献求助
25秒前
Jasper应助绿泡泡采纳,获得10
28秒前
WRZ完成签到,获得积分10
28秒前
黑色土豆发布了新的文献求助200
28秒前
九粒发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190