已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data

计算机科学 非线性系统 人工智能 堆积 因果模型 算法 模式识别(心理学) 数学 统计 核磁共振 量子力学 物理
作者
Kai-Cheng Chuang,Sreekrishna Ramakrishnapillai,Lydia A. Bazzano,Owen Carmichael
出处
期刊:Lecture Notes in Computer Science 卷期号:: 113-124 被引量:2
标识
DOI:10.1007/978-3-030-87586-2_12
摘要

Conditional Granger causality, based on functional magnetic resonance imaging (fMRI) time series signals, is the quantification of how strongly brain activity in a certain source brain region contributes to brain activity in a target brain region, independent of the contributions of other source regions. Current methods to solve this problem are either unable to model nonlinear relationships between source and target signals, unable to efficiently quantify time lags in source-target relationships, or require ad hoc parameter settings and post hoc calculations to assess conditional Granger causality. This paper proposes the use of deep stacking networks, with dilated convolutional neural networks (CNNs) as component parts, to address these challenges. The dilated CNNs nonlinearly model the target signal as a function of source signals. Conditional Granger causality is assessed in terms of how much modeling fidelity increases when additional dilated CNNs are added to the model. Time lags between source and target signals are estimated by analyzing estimated dilated CNN parameters. Our technique successfully estimated conditional Granger causality, did not spuriously identify false causal relationships, and correctly estimated time lags when applied to synthetic datasets and data generated by the STANCE fMRI simulator. When applied to real-world task fMRI data from an epidemiological cohort, the method identified biologically plausible causal relationships among regions known to be task-engaged and provided new information about causal structure among sources and targets that traditional single-source causal modeling could not provide. The proposed method is promising for modeling complex Granger causal relationships within brain networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yayayaqwqa完成签到,获得积分20
1秒前
2秒前
4秒前
5秒前
5秒前
L1nJ1nG发布了新的文献求助10
6秒前
su发布了新的文献求助10
7秒前
我要学习完成签到 ,获得积分10
7秒前
FashionBoy应助ardejiang采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
清脆松应助科研通管家采纳,获得20
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
健康的谷芹完成签到,获得积分10
8秒前
恶恶么v发布了新的文献求助10
9秒前
SNB888发布了新的文献求助10
9秒前
tmr发布了新的文献求助10
10秒前
10秒前
xxiao发布了新的文献求助30
10秒前
阳光的花卷关注了科研通微信公众号
11秒前
希望天下0贩的0应助liebe采纳,获得10
12秒前
远古遗迹完成签到,获得积分10
12秒前
13秒前
风过无痕zj完成签到,获得积分20
15秒前
Lucas应助风中小夏采纳,获得10
16秒前
17秒前
18秒前
18秒前
布丁完成签到,获得积分10
19秒前
qqqqqqwwww完成签到,获得积分10
20秒前
22秒前
23秒前
盛夏如花发布了新的文献求助10
23秒前
24秒前
酷波er应助可靠草丛采纳,获得10
24秒前
wsxx200024发布了新的文献求助10
24秒前
25秒前
cbf发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466573
求助须知:如何正确求助?哪些是违规求助? 3059341
关于积分的说明 9066005
捐赠科研通 2749807
什么是DOI,文献DOI怎么找? 1508718
科研通“疑难数据库(出版商)”最低求助积分说明 697030
邀请新用户注册赠送积分活动 696838