已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data

计算机科学 非线性系统 人工智能 堆积 因果模型 算法 模式识别(心理学) 数学 统计 核磁共振 量子力学 物理
作者
Kai-Cheng Chuang,Sreekrishna Ramakrishnapillai,Lydia A. Bazzano,Owen Carmichael
出处
期刊:Lecture Notes in Computer Science 卷期号:: 113-124 被引量:2
标识
DOI:10.1007/978-3-030-87586-2_12
摘要

Conditional Granger causality, based on functional magnetic resonance imaging (fMRI) time series signals, is the quantification of how strongly brain activity in a certain source brain region contributes to brain activity in a target brain region, independent of the contributions of other source regions. Current methods to solve this problem are either unable to model nonlinear relationships between source and target signals, unable to efficiently quantify time lags in source-target relationships, or require ad hoc parameter settings and post hoc calculations to assess conditional Granger causality. This paper proposes the use of deep stacking networks, with dilated convolutional neural networks (CNNs) as component parts, to address these challenges. The dilated CNNs nonlinearly model the target signal as a function of source signals. Conditional Granger causality is assessed in terms of how much modeling fidelity increases when additional dilated CNNs are added to the model. Time lags between source and target signals are estimated by analyzing estimated dilated CNN parameters. Our technique successfully estimated conditional Granger causality, did not spuriously identify false causal relationships, and correctly estimated time lags when applied to synthetic datasets and data generated by the STANCE fMRI simulator. When applied to real-world task fMRI data from an epidemiological cohort, the method identified biologically plausible causal relationships among regions known to be task-engaged and provided new information about causal structure among sources and targets that traditional single-source causal modeling could not provide. The proposed method is promising for modeling complex Granger causal relationships within brain networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn发布了新的文献求助10
1秒前
2秒前
AOPs发布了新的文献求助10
2秒前
2秒前
catsfat完成签到,获得积分10
5秒前
多年以后发布了新的文献求助10
7秒前
8秒前
fanyueyue应助三井库里采纳,获得10
9秒前
allen完成签到,获得积分10
10秒前
赫绮琴发布了新的文献求助10
12秒前
FashionBoy应助111111111采纳,获得10
13秒前
wanci应助Arui采纳,获得10
13秒前
14秒前
赫绮琴完成签到,获得积分10
20秒前
哈比人linling完成签到,获得积分10
20秒前
多发paper啊完成签到,获得积分10
21秒前
22秒前
23秒前
念初发布了新的文献求助10
25秒前
27秒前
Arui发布了新的文献求助10
28秒前
几酝发布了新的文献求助10
30秒前
六年完成签到,获得积分20
30秒前
顾矜应助miles采纳,获得10
31秒前
35秒前
Alex应助谈理想采纳,获得20
35秒前
aowulan完成签到 ,获得积分10
36秒前
赘婿应助立军采纳,获得100
37秒前
大力完成签到 ,获得积分10
38秒前
orixero应助念初采纳,获得10
44秒前
恋雅颖月应助谨慎雪碧采纳,获得10
50秒前
55秒前
56秒前
hhhi发布了新的文献求助10
58秒前
leo完成签到,获得积分10
58秒前
orixero应助科研通管家采纳,获得10
58秒前
彭于晏应助科研通管家采纳,获得10
58秒前
乐乐应助科研通管家采纳,获得10
58秒前
乐乐应助科研通管家采纳,获得10
58秒前
猪猪hero应助科研通管家采纳,获得10
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989918
求助须知:如何正确求助?哪些是违规求助? 3532013
关于积分的说明 11255831
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216