A hybrid deep transfer learning strategy for thermal comfort prediction in buildings

热舒适性 不可用 阿什拉1.90 暖通空调 计算机科学 卷积神经网络 过度拟合 空调 过采样 人工智能 杠杆(统计) 人工神经网络 机器学习 学习迁移 工程类 可靠性工程 气象学 机械工程 计算机网络 物理 带宽(计算)
作者
Nivethitha Somu,Anirudh Sriram,Anupama Kowli,Krithi Ramamritham
出处
期刊:Building and Environment [Elsevier]
卷期号:204: 108133-108133 被引量:88
标识
DOI:10.1016/j.buildenv.2021.108133
摘要

Since the thermal condition of living spaces affects the occupants' productivity and their quality of life, it is important to design effective heating, ventilation and air conditioning (HVAC) control strategies for better energy efficiency and thermal comfort. An essential step in HVAC control and energy optimization is thermal comfort modeling. Recently, data-driven thermal comfort models have been preferred over the Fanger's Predicted Mean Vote (PMV) model due to higher accuracy and ease of use. However, the unavailability of comprehensive labelled thermal comfort data from the occupants poses a significant modeling challenge. This paper addresses data inadequacy issues by adopting ‘transfer learning’ to leverage well learned knowledge from source domain (same climate zones) to target domain (different climate zone) where modeling data is sparse. Specifically, a Transfer Learning based Convolutional Neural Networks-Long Short Term Memory neural networks (TL CNN-LSTM) is designed for effective thermal comfort modeling that exploits the spatio-temporal relations in the thermal comfort data. The significant modeling parameters for TL CNN-LSTM are identified using the Chi-squared test. Further, the lack of sufficient samples across all thermal conditions in the available thermal comfort datasets was handled by Synthetic Minority Oversampling Technique (SMOTE). Experiments with two source (ASHRAE RP-884 and Scales Project) and one target (Medium US office) datasets demonstrate the ability of TL CNN-LSTM in achieving an accuracy of >55% with limited data in target buildings. The limitation of TL CNN-LSTM is its continued dependence on intrusive parameters and the challenges in assessing its adaptability to different climate zones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
打打应助Sake采纳,获得10
1秒前
JamesPei应助Bazinga采纳,获得10
1秒前
华仔应助核动力驴采纳,获得10
1秒前
技术k拉完成签到,获得积分20
1秒前
2秒前
2秒前
所所应助longer采纳,获得10
2秒前
3秒前
我是老大应助Garlic采纳,获得10
3秒前
4秒前
Lucas应助www采纳,获得10
4秒前
宋呵呵完成签到,获得积分10
5秒前
森一发布了新的文献求助10
5秒前
5秒前
Ann完成签到,获得积分10
5秒前
Achhz发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
zpl完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
俞弼发布了新的文献求助10
7秒前
Hello应助一二采纳,获得10
7秒前
Zxx完成签到 ,获得积分20
8秒前
SunK1876完成签到,获得积分10
8秒前
在水一方应助Troyelm采纳,获得10
8秒前
顾矜应助鲜于元龙采纳,获得10
8秒前
starrysky完成签到,获得积分20
8秒前
9秒前
逗逗发布了新的文献求助10
9秒前
zhan发布了新的文献求助10
9秒前
付一彤发布了新的文献求助10
9秒前
9秒前
future发布了新的文献求助10
9秒前
10秒前
斯文败类应助桔子采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994