A hybrid deep transfer learning strategy for thermal comfort prediction in buildings

热舒适性 不可用 阿什拉1.90 暖通空调 计算机科学 卷积神经网络 过度拟合 空调 过采样 人工智能 杠杆(统计) 人工神经网络 机器学习 学习迁移 工程类 可靠性工程 气象学 机械工程 计算机网络 物理 带宽(计算)
作者
Nivethitha Somu,Anirudh Sriram,Anupama Kowli,Krithi Ramamritham
出处
期刊:Building and Environment [Elsevier]
卷期号:204: 108133-108133 被引量:88
标识
DOI:10.1016/j.buildenv.2021.108133
摘要

Since the thermal condition of living spaces affects the occupants' productivity and their quality of life, it is important to design effective heating, ventilation and air conditioning (HVAC) control strategies for better energy efficiency and thermal comfort. An essential step in HVAC control and energy optimization is thermal comfort modeling. Recently, data-driven thermal comfort models have been preferred over the Fanger's Predicted Mean Vote (PMV) model due to higher accuracy and ease of use. However, the unavailability of comprehensive labelled thermal comfort data from the occupants poses a significant modeling challenge. This paper addresses data inadequacy issues by adopting ‘transfer learning’ to leverage well learned knowledge from source domain (same climate zones) to target domain (different climate zone) where modeling data is sparse. Specifically, a Transfer Learning based Convolutional Neural Networks-Long Short Term Memory neural networks (TL CNN-LSTM) is designed for effective thermal comfort modeling that exploits the spatio-temporal relations in the thermal comfort data. The significant modeling parameters for TL CNN-LSTM are identified using the Chi-squared test. Further, the lack of sufficient samples across all thermal conditions in the available thermal comfort datasets was handled by Synthetic Minority Oversampling Technique (SMOTE). Experiments with two source (ASHRAE RP-884 and Scales Project) and one target (Medium US office) datasets demonstrate the ability of TL CNN-LSTM in achieving an accuracy of >55% with limited data in target buildings. The limitation of TL CNN-LSTM is its continued dependence on intrusive parameters and the challenges in assessing its adaptability to different climate zones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助天天采纳,获得30
1秒前
2秒前
Enyu完成签到 ,获得积分10
2秒前
lmj完成签到,获得积分10
2秒前
花景铭发布了新的文献求助10
3秒前
幸福幻巧应助科研羊采纳,获得10
3秒前
幸福安白发布了新的文献求助10
3秒前
4秒前
5秒前
7秒前
7秒前
7秒前
科目三应助禹卓采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
彭于晏应助Fiy采纳,获得10
8秒前
8秒前
yangfan发布了新的文献求助10
8秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
HHHHH发布了新的文献求助10
11秒前
12秒前
14秒前
LPL发布了新的文献求助10
14秒前
勤奋的立果完成签到 ,获得积分10
14秒前
大个应助猪猪hero采纳,获得10
14秒前
LKC完成签到 ,获得积分10
15秒前
17秒前
997发布了新的文献求助10
17秒前
17秒前
CodeCraft应助李茉琳采纳,获得10
18秒前
GGbond完成签到,获得积分20
19秒前
胡霖完成签到,获得积分10
19秒前
skylee9527发布了新的文献求助10
19秒前
22秒前
23秒前
24秒前
25秒前
FashionBoy应助张wx_100采纳,获得10
26秒前
28秒前
未闻子规啼完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785302
求助须知:如何正确求助?哪些是违规求助? 5687230
关于积分的说明 15467275
捐赠科研通 4914416
什么是DOI,文献DOI怎么找? 2645196
邀请新用户注册赠送积分活动 1593006
关于科研通互助平台的介绍 1547351