543 EEG-Based Deep Neural Network Model for Brain Age Prediction and Its Association with Patient Health Conditions

癫痫 脑电图 艾普沃思嗜睡量表 多导睡眠图 听力学 医学 心理学 精神科
作者
Yoav Nygate,Sam Rusk,Chris Fernandez,Nick Glattard,Jessica Arguelles,Jiaxiao Shi,Dennis Hwang,Nathaniel F. Watson
出处
期刊:Sleep [Oxford University Press]
卷期号:44 (Supplement_2): A214-A214 被引量:6
标识
DOI:10.1093/sleep/zsab072.541
摘要

Abstract Introduction Electroencephalogram (EEG) provides clinically relevant information for personalized patient health evaluation and comprehensive assessment of sleep. EEG-based indices have been associated with neurodegenerative conditions, psychiatric disorders, and metabolic and cardiovascular disease, and hold promise as a biomarker for brain health. Methods A deep neural network (DNN) model was trained to predict the age of patients using raw EEG signals recorded during clinical polysomnography (PSG). The DNN was trained on N=126,241 PSGs, validated on N=6,638, and tested on a holdout set of N=1,172. The holdout dataset included several categories of patient demographic and diagnostic parameters, allowing us to examine the association between brain age and a variety of medical conditions. Brain age was assessed by subtracting the individual’s chronological brain age from their EEG-predicted brain age (Brain Age Index; BAI), and then taking the absolute value of this variable (Absolute Brain Age Index; ABAI). We then constructed two regression models to test the relationship between BAI/ABAI and the following list of patient parameters: sex, BMI, depression, alcohol/drug problems, memory/concentration problems, epilepsy/seizures, diabetes, stroke, severe excessive daytime sleepiness (e.g., Epworth Sleepiness Scale ≥ 16; EDS), apnea-hypopnea index (AHI), arousal index (ArI), and sleep efficiency (SE). Results The DNN brain age model produced a mean absolute error of 4.604 and a Pearson’s r value of 0.933 which surpass the performance of prior research. In our regression analyses, we found a statistically significant relationship between the ABAI and: epilepsy and seizure disorders, stroke, elevated AHI, elevated ArI, and low SE (all p<0.05). This demonstrates these health conditions are associated with deviations of one’s predicted brain age from their chronological brain age. We also found patients with diabetes, depression, severe EDS, hypertension, and/or memory and concentration problems showed, on average, an elevated BAI compared to the healthy population sample (all p<0.05). Conclusion We show DNNs can accurately predict the brain age of healthy patients based on their raw, PSG derived, EEG recordings. Furthermore, we reveal indices, such as BAI and ABAI, display unique characteristics within different diseased populations, highlighting their potential value as novel diagnostic biomarker and potential “vital sign” of brain health. Support (if any):
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hotmail完成签到,获得积分10
刚刚
Lucas应助莉莉采纳,获得10
2秒前
3秒前
3秒前
zdw0120发布了新的文献求助10
3秒前
舒服的幻梦完成签到,获得积分20
3秒前
mm完成签到,获得积分10
3秒前
4秒前
锅锅发布了新的文献求助10
4秒前
4秒前
4秒前
紫色系完成签到,获得积分10
6秒前
今后应助ziyue采纳,获得10
6秒前
6秒前
6秒前
绿野金完成签到,获得积分10
6秒前
青青子衿完成签到,获得积分10
7秒前
酷炫半青完成签到,获得积分10
7秒前
qew发布了新的文献求助20
8秒前
ggyybb完成签到 ,获得积分10
8秒前
9秒前
我是雅婷发布了新的文献求助10
9秒前
失似发布了新的文献求助10
9秒前
dd发布了新的文献求助10
10秒前
10秒前
茄子蛋发布了新的文献求助10
10秒前
11秒前
12秒前
CarolineOY完成签到,获得积分10
12秒前
暗号发布了新的文献求助10
12秒前
李健应助xuhandi采纳,获得10
13秒前
笑点低的蚂蚁完成签到,获得积分10
13秒前
meo应助风中的天菱采纳,获得10
13秒前
Sodagreen2023发布了新的文献求助10
14秒前
15秒前
Wri完成签到,获得积分10
16秒前
打打应助舒服的幻梦采纳,获得10
16秒前
LIN发布了新的文献求助10
16秒前
liuxix完成签到,获得积分10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552796
求助须知:如何正确求助?哪些是违规求助? 3128883
关于积分的说明 9379843
捐赠科研通 2828004
什么是DOI,文献DOI怎么找? 1554841
邀请新用户注册赠送积分活动 725605
科研通“疑难数据库(出版商)”最低求助积分说明 715056