Direct in Vitro Comparison of Daratumumab with Surrogate Analogs of CD38 Antibodies MOR03087, SAR650984 and Ab79

达拉图穆马 抗体依赖性细胞介导的细胞毒性 单克隆抗体 抗体 CD38 分子生物学 克隆(Java方法) 生物 免疫学 化学 癌症研究 细胞生物学 干细胞 生物化学 DNA 川地34
作者
Jeroen Lammerts van Bueren,Danielle Jakobs,Niels Kaldenhoven,Marcel Roza,Sanne Hiddingh,Joyce Meesters,Marleen Voorhorst,Elke Gresnigt,Luus Wiegman,Antonio Ortiz Buijsse,Grietje Andringa,Marije B. Overdijk,Parul Doshi,Kate Sasser,Michel de Weers,Paul W.H.I. Parren
出处
期刊:Blood [Elsevier BV]
卷期号:124 (21): 3474-3474 被引量:202
标识
DOI:10.1182/blood.v124.21.3474.3474
摘要

Abstract The CD38 molecule, with its high expression on Multiple Myeloma (MM), is considered a suitable target for antibody therapy of MM. We developed daratumumab (DARA), a human CD38 monoclonal antibody (mAb) with direct and Fc-mediated cell killing activity. DARA induces killing of tumor cells, mainly via complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) (de Weers M. J Immunol 2011), and antibody-dependent cellular phagocytosis (ADCP) by macrophages (both murine and human). In addition, DARA induces apoptosis upon secondary cross-linking and modulates CD38 enzymatic function. DARA is currently in phase I, II and III clinical evaluation in patients with MM. Besides DARA, several other anti-CD38 mAb are in development; SAR650894 (SAR; clone 38SB19; Sanofi-Aventis) for MM and other CD38+ hematological malignancies, MOR03087 (MOR; Morphosys) for relapsed/refractory MM and Ab79 (Millenium/Takeda) which is in preclinical development. Similar mechanisms of action (MoA) are described for these mAb; nevertheless direct comparison studies would be critical for differentiation among these antibodies. . In this study, the efficacy of these anti-CD38 mAb was directly compared to DARA with respect to binding, apoptosis, CD38 ectoenzyme activity, and the induction of ADCC, ADCP and CDC. Surrogate antibodies of MOR, SAR and Ab79 were generated on the basis of protein sequences, as published in their corresponding patents families, and were attached to the backbone of DARA. Binding to CD38 expressing Daudi tumor cells was assessed by flow cytomery. All CD38 antibodies showed similar EC50 (~0.1 µg/mL) and maximal binding, except MOR which showed a lower apparent affinity (~0.3 µg/mL). Previously, CD38 amino acid residues Q272 and S274 were reported as critical for DARA binding. ELISA analyses using CD38 point mutants revealed MOR, SAR and Ab79 not to be affected by mutation of these residues. All CD38 mAb were equally potent in inducing ADCC of Daudi cells (40-60% lysis, 0.02 µg/mL), in classic Cr51-release ADCC assay using human PBMC effector cells (E:T ratio 100:1). Important differences were observed with respect to induction of CDC. SAR was unable to induce CDC in Daudi cells at concentrations up to 30 µg/mL, while DARA induced more than 80% lysis at concentrations above 1 µg/mL. Ab79 and MOR induced CDC, yet maximum lysis was 50% and 20%, respectively. Evaluation of Annexin V/propidium iodide (AnnV/PI) staining and activation of caspase-3 showed that only SAR induced AnnV/PI+ in Ramos cells (~40%) after 48 h exposure without Fc crosslinking, but did not activate caspase-3. In the presence of Fc crosslinking antibodies, all anti-CD38 mAb induced AnnV/PI+, caspase-3 mediated apoptosis. In enzyme activity assays using purified CD38 protein, SAR inhibited generation of cGDPR (indicative of the combined CD38 cyclase activity generating fluorescent cGDPR and hydrolase activity converting cGDPR into GDPR)more effectively than DARA (~70% vs. ~20% inhibition at 30 µg/mL). Ab79 had a modest effect on CD38 enzyme activity (~10% inhibition). MOR did not affect CD38 enzyme activity at all. The capacity to induce ADCP was only tested for DARA, MOR and Ab79 using mouse macrophages (mφ) as effector cells and Daudi target cells. mφ, isolated and matured from bone marrow cells, and calcein-AM labelled target cells (E:T ratio 1:1) were cultured in the presence of 0.0006-5 µg/mL antibody for 4 h. Non-phagocytosed target cells and mφ were collected and ADCP was evaluated by flow cytometry. All CD38 mAb induced mφ-mediated phagocytosis, as observed by a concentration dependent increase in the number of double positive mφ and killing of target cells. Ab79 was as effective as DARA (EC50 ~0.01 µg/mL) in ADCP induction, whereas MOR was less effective (EC50 0.04 µg/mL). In summary, DARA and surrogate mAb of MOR, SAR and Ab79 showed similar binding to cells and induced similar amounts of ADCC. Differences between these mAb involved the ability to directly induce apoptosis, to inhibit the enzymatic activity of CD38 and to induce ADCP. The most striking difference was observed for the ability to induce CDC, the MoA which is currently believed the most important mechanism of MM cell killing in the clinic. DARA efficiently induced high levels of CDC at low concentrations, whereas the other CD38 mAb were unable or less capable to induce CDC. Disclosures Lammerts van Bueren: Genmab: Employment, warrents Other. Jakobs:Genmab: Employment, warrents Other. Kaldenhoven:Genmab: Employment, warrents Other. Roza:Genmab: Employment, warrents Other. Hiddingh:Genmab: Employment. Meesters:Genmab: Employment, warrents Other. Voorhorst:Genmab: Employment, warrents Other. Gresnigt:Genmab: Employment, warrents Other. Wiegman:Genmab: Employment, warrents Other. Ortiz Buijsse:Genmab: Employment, warrents Other. Andringa:Genmab: Employment, warrents Other. Overdijk:Genmab: Employment, warrents Other. Doshi:Janssen R&D: Employment. Sasser:Janssen R&D: Employment. de Weers:Genmab: Employment, warrents Other. Parren:Genmab: Employment, inventor on patents regarding daratumumab Patents & Royalties, stock and warrents Other.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈七完成签到,获得积分10
刚刚
1秒前
HBin发布了新的文献求助20
1秒前
orixero应助飘逸的宫苴采纳,获得10
2秒前
安静的依琴完成签到 ,获得积分10
2秒前
标致的问晴完成签到,获得积分0
3秒前
Dasha完成签到,获得积分10
3秒前
田様应助碧蓝鸡翅采纳,获得50
3秒前
养蚊子发布了新的文献求助10
4秒前
zyjsunye发布了新的文献求助10
4秒前
yu完成签到,获得积分10
5秒前
搞怪的白竹完成签到,获得积分10
5秒前
浮游应助守望者采纳,获得10
6秒前
研友_J8DXp8应助浅色凉生采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
9秒前
okay完成签到,获得积分10
9秒前
minagao发布了新的文献求助10
9秒前
洋洋洋发布了新的文献求助10
12秒前
生命奋斗发布了新的文献求助10
13秒前
王忠莲完成签到,获得积分10
13秒前
养蚊子完成签到,获得积分10
13秒前
科研小小白完成签到,获得积分10
13秒前
天明发布了新的文献求助10
13秒前
川川发布了新的文献求助10
13秒前
15秒前
sfsdfs完成签到,获得积分10
16秒前
炙热的人生完成签到,获得积分10
16秒前
乐安完成签到,获得积分20
18秒前
19秒前
20秒前
ograss发布了新的文献求助10
21秒前
陈某发布了新的文献求助10
21秒前
22秒前
虚心的如冰完成签到 ,获得积分10
23秒前
李爱国应助zy采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002750
求助须知:如何正确求助?哪些是违规求助? 4247654
关于积分的说明 13233788
捐赠科研通 4046574
什么是DOI,文献DOI怎么找? 2213740
邀请新用户注册赠送积分活动 1223789
关于科研通互助平台的介绍 1144127