亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Direct in Vitro Comparison of Daratumumab with Surrogate Analogs of CD38 Antibodies MOR03087, SAR650984 and Ab79

达拉图穆马 抗体依赖性细胞介导的细胞毒性 单克隆抗体 抗体 CD38 分子生物学 克隆(Java方法) 生物 免疫学 化学 癌症研究 细胞生物学 干细胞 生物化学 川地34 DNA
作者
Jeroen Lammerts van Bueren,Danielle Jakobs,Niels Kaldenhoven,Marcel Roza,Sanne Hiddingh,Joyce Meesters,Marleen Voorhorst,Elke Gresnigt,Luus Wiegman,Antonio Ortiz Buijsse,Grietje Andringa,Marije B. Overdijk,Parul Doshi,Kate Sasser,Michel de Weers,Paul W.H.I. Parren
出处
期刊:Blood [American Society of Hematology]
卷期号:124 (21): 3474-3474 被引量:189
标识
DOI:10.1182/blood.v124.21.3474.3474
摘要

Abstract The CD38 molecule, with its high expression on Multiple Myeloma (MM), is considered a suitable target for antibody therapy of MM. We developed daratumumab (DARA), a human CD38 monoclonal antibody (mAb) with direct and Fc-mediated cell killing activity. DARA induces killing of tumor cells, mainly via complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) (de Weers M. J Immunol 2011), and antibody-dependent cellular phagocytosis (ADCP) by macrophages (both murine and human). In addition, DARA induces apoptosis upon secondary cross-linking and modulates CD38 enzymatic function. DARA is currently in phase I, II and III clinical evaluation in patients with MM. Besides DARA, several other anti-CD38 mAb are in development; SAR650894 (SAR; clone 38SB19; Sanofi-Aventis) for MM and other CD38+ hematological malignancies, MOR03087 (MOR; Morphosys) for relapsed/refractory MM and Ab79 (Millenium/Takeda) which is in preclinical development. Similar mechanisms of action (MoA) are described for these mAb; nevertheless direct comparison studies would be critical for differentiation among these antibodies. . In this study, the efficacy of these anti-CD38 mAb was directly compared to DARA with respect to binding, apoptosis, CD38 ectoenzyme activity, and the induction of ADCC, ADCP and CDC. Surrogate antibodies of MOR, SAR and Ab79 were generated on the basis of protein sequences, as published in their corresponding patents families, and were attached to the backbone of DARA. Binding to CD38 expressing Daudi tumor cells was assessed by flow cytomery. All CD38 antibodies showed similar EC50 (~0.1 µg/mL) and maximal binding, except MOR which showed a lower apparent affinity (~0.3 µg/mL). Previously, CD38 amino acid residues Q272 and S274 were reported as critical for DARA binding. ELISA analyses using CD38 point mutants revealed MOR, SAR and Ab79 not to be affected by mutation of these residues. All CD38 mAb were equally potent in inducing ADCC of Daudi cells (40-60% lysis, 0.02 µg/mL), in classic Cr51-release ADCC assay using human PBMC effector cells (E:T ratio 100:1). Important differences were observed with respect to induction of CDC. SAR was unable to induce CDC in Daudi cells at concentrations up to 30 µg/mL, while DARA induced more than 80% lysis at concentrations above 1 µg/mL. Ab79 and MOR induced CDC, yet maximum lysis was 50% and 20%, respectively. Evaluation of Annexin V/propidium iodide (AnnV/PI) staining and activation of caspase-3 showed that only SAR induced AnnV/PI+ in Ramos cells (~40%) after 48 h exposure without Fc crosslinking, but did not activate caspase-3. In the presence of Fc crosslinking antibodies, all anti-CD38 mAb induced AnnV/PI+, caspase-3 mediated apoptosis. In enzyme activity assays using purified CD38 protein, SAR inhibited generation of cGDPR (indicative of the combined CD38 cyclase activity generating fluorescent cGDPR and hydrolase activity converting cGDPR into GDPR)more effectively than DARA (~70% vs. ~20% inhibition at 30 µg/mL). Ab79 had a modest effect on CD38 enzyme activity (~10% inhibition). MOR did not affect CD38 enzyme activity at all. The capacity to induce ADCP was only tested for DARA, MOR and Ab79 using mouse macrophages (mφ) as effector cells and Daudi target cells. mφ, isolated and matured from bone marrow cells, and calcein-AM labelled target cells (E:T ratio 1:1) were cultured in the presence of 0.0006-5 µg/mL antibody for 4 h. Non-phagocytosed target cells and mφ were collected and ADCP was evaluated by flow cytometry. All CD38 mAb induced mφ-mediated phagocytosis, as observed by a concentration dependent increase in the number of double positive mφ and killing of target cells. Ab79 was as effective as DARA (EC50 ~0.01 µg/mL) in ADCP induction, whereas MOR was less effective (EC50 0.04 µg/mL). In summary, DARA and surrogate mAb of MOR, SAR and Ab79 showed similar binding to cells and induced similar amounts of ADCC. Differences between these mAb involved the ability to directly induce apoptosis, to inhibit the enzymatic activity of CD38 and to induce ADCP. The most striking difference was observed for the ability to induce CDC, the MoA which is currently believed the most important mechanism of MM cell killing in the clinic. DARA efficiently induced high levels of CDC at low concentrations, whereas the other CD38 mAb were unable or less capable to induce CDC. Disclosures Lammerts van Bueren: Genmab: Employment, warrents Other. Jakobs:Genmab: Employment, warrents Other. Kaldenhoven:Genmab: Employment, warrents Other. Roza:Genmab: Employment, warrents Other. Hiddingh:Genmab: Employment. Meesters:Genmab: Employment, warrents Other. Voorhorst:Genmab: Employment, warrents Other. Gresnigt:Genmab: Employment, warrents Other. Wiegman:Genmab: Employment, warrents Other. Ortiz Buijsse:Genmab: Employment, warrents Other. Andringa:Genmab: Employment, warrents Other. Overdijk:Genmab: Employment, warrents Other. Doshi:Janssen R&D: Employment. Sasser:Janssen R&D: Employment. de Weers:Genmab: Employment, warrents Other. Parren:Genmab: Employment, inventor on patents regarding daratumumab Patents & Royalties, stock and warrents Other.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
葛二蛋完成签到,获得积分10
3秒前
4秒前
44秒前
哈哈哈发布了新的文献求助10
52秒前
xuzj完成签到 ,获得积分10
58秒前
哈哈哈完成签到,获得积分10
1分钟前
1分钟前
琪凯定理完成签到,获得积分10
1分钟前
琪凯定理发布了新的文献求助10
1分钟前
春夏爱科研完成签到,获得积分10
1分钟前
野椒搞科研完成签到,获得积分10
1分钟前
1分钟前
1分钟前
野椒搞科研发布了新的文献求助200
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
科研通AI2S应助体贴花卷采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
zhangchaohui555完成签到,获得积分20
2分钟前
诚心的信封完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
Yasmine发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
zj完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Wilson完成签到 ,获得积分10
3分钟前
xfcy完成签到,获得积分10
3分钟前
AARON完成签到,获得积分10
3分钟前
xfcy发布了新的文献求助10
4分钟前
4分钟前
4分钟前
归tu发布了新的文献求助10
4分钟前
4分钟前
Yasmine完成签到,获得积分10
4分钟前
4分钟前
Dailei完成签到,获得积分10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314391
求助须知:如何正确求助?哪些是违规求助? 2946633
关于积分的说明 8531170
捐赠科研通 2622376
什么是DOI,文献DOI怎么找? 1434483
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881