亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepFruits: A Fruit Detection System Using Deep Neural Networks

卷积神经网络 计算机科学 人工智能 RGB颜色模型 目标检测 深度学习 最小边界框 跳跃式监视 过程(计算) 模式识别(心理学) 学习迁移 人工神经网络 计算机视觉 图像(数学) 操作系统
作者
Inkyu Sa,Zongyuan Ge,Feras Dayoub,Ben Upcroft,Tristán Pérez,Chris McCool
出处
期刊:Sensors [MDPI AG]
卷期号:16 (8): 1222-1222 被引量:836
标识
DOI:10.3390/s16081222
摘要

This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助harrywoo采纳,获得30
6秒前
harrywoo完成签到,获得积分20
18秒前
栀盎完成签到 ,获得积分10
46秒前
yujie完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
CodeCraft应助王红玉采纳,获得10
1分钟前
1分钟前
2分钟前
王红玉发布了新的文献求助10
2分钟前
2分钟前
和谐的芷文完成签到 ,获得积分10
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
mochalv123完成签到 ,获得积分10
4分钟前
ZDTT完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
whichwu发布了新的文献求助10
6分钟前
6分钟前
6分钟前
Gigi发布了新的文献求助10
6分钟前
whichwu完成签到,获得积分10
6分钟前
6分钟前
GingerF应助dh采纳,获得60
7分钟前
7分钟前
jarrykim发布了新的文献求助10
7分钟前
WebCasa完成签到,获得积分10
8分钟前
8分钟前
Picopy发布了新的文献求助10
8分钟前
8分钟前
jarrykim完成签到,获得积分10
8分钟前
poohpooh发布了新的文献求助10
8分钟前
8分钟前
poohpooh完成签到,获得积分10
8分钟前
9分钟前
Picopy完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413296
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122913
捐赠科研通 4445466
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756