DeepFruits: A Fruit Detection System Using Deep Neural Networks

卷积神经网络 计算机科学 人工智能 RGB颜色模型 目标检测 深度学习 最小边界框 跳跃式监视 过程(计算) 模式识别(心理学) 学习迁移 人工神经网络 计算机视觉 图像(数学) 操作系统
作者
Inkyu Sa,Zongyuan Ge,Feras Dayoub,Ben Upcroft,Tristán Pérez,Chris McCool
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:16 (8): 1222-1222 被引量:836
标识
DOI:10.3390/s16081222
摘要

This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平旺完成签到,获得积分10
刚刚
64658应助伯赏乐枫采纳,获得10
刚刚
qqqq发布了新的文献求助10
1秒前
斯文败类应助哈鲤采纳,获得10
2秒前
完美的him发布了新的文献求助10
2秒前
c小薇完成签到,获得积分10
3秒前
长情藏今发布了新的文献求助10
3秒前
Owen应助根根采纳,获得10
4秒前
英姑应助调皮冰兰采纳,获得10
4秒前
科研通AI6应助夏蓉采纳,获得10
4秒前
情怀应助山山采纳,获得10
4秒前
虚幻的香彤完成签到,获得积分10
5秒前
清晨的小鹿完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
skychen完成签到,获得积分20
6秒前
7秒前
qqqq完成签到,获得积分10
7秒前
饭饭完成签到,获得积分20
7秒前
葛稀发布了新的文献求助10
8秒前
Dank1ng发布了新的文献求助30
8秒前
无极微光应助jiang采纳,获得20
10秒前
阿彤完成签到,获得积分10
10秒前
娇娇大王完成签到,获得积分10
12秒前
David完成签到 ,获得积分10
13秒前
13秒前
大大怪发布了新的文献求助10
13秒前
14秒前
14秒前
包容酸奶发布了新的文献求助10
14秒前
饭饭关注了科研通微信公众号
17秒前
17秒前
张华发布了新的文献求助50
17秒前
慕青应助苹果白凡采纳,获得10
18秒前
jakck完成签到,获得积分10
18秒前
英姑应助快乐的萝莉采纳,获得10
19秒前
科研通AI5应助风趣的灵枫采纳,获得10
19秒前
调皮冰兰发布了新的文献求助10
20秒前
21秒前
科研通AI5应助包容酸奶采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941676
求助须知:如何正确求助?哪些是违规求助? 4207590
关于积分的说明 13078573
捐赠科研通 3986551
什么是DOI,文献DOI怎么找? 2182617
邀请新用户注册赠送积分活动 1198256
关于科研通互助平台的介绍 1110551