亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepFruits: A Fruit Detection System Using Deep Neural Networks

卷积神经网络 计算机科学 人工智能 RGB颜色模型 目标检测 深度学习 最小边界框 跳跃式监视 过程(计算) 模式识别(心理学) 学习迁移 人工神经网络 计算机视觉 图像(数学) 操作系统
作者
Inkyu Sa,Zongyuan Ge,Feras Dayoub,Ben Upcroft,Tristán Pérez,Chris McCool
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:16 (8): 1222-1222 被引量:836
标识
DOI:10.3390/s16081222
摘要

This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
李健应助堕落的飞猪采纳,获得10
6秒前
8秒前
pure123完成签到,获得积分10
8秒前
wenliu完成签到,获得积分10
8秒前
普通用户30号完成签到 ,获得积分10
10秒前
wenliu发布了新的文献求助10
11秒前
13秒前
27秒前
33秒前
43秒前
44秒前
45秒前
dtsgydbd发布了新的文献求助10
48秒前
饼子发布了新的文献求助10
50秒前
唐泽雪穗发布了新的文献求助10
51秒前
1分钟前
1分钟前
1分钟前
wrl2023完成签到,获得积分10
1分钟前
魏佳奇发布了新的文献求助10
1分钟前
赘婿应助dtsgydbd采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得60
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
cc完成签到,获得积分10
1分钟前
334niubi666完成签到 ,获得积分10
1分钟前
丘比特应助魏佳奇采纳,获得10
1分钟前
1分钟前
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
脑洞疼应助槑槑采纳,获得10
2分钟前
2分钟前
下文献的蜉蝣完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371519
关于积分的说明 13612286
捐赠科研通 4223980
什么是DOI,文献DOI怎么找? 2316753
邀请新用户注册赠送积分活动 1315380
关于科研通互助平台的介绍 1264495