DeepFruits: A Fruit Detection System Using Deep Neural Networks

卷积神经网络 计算机科学 人工智能 RGB颜色模型 目标检测 深度学习 最小边界框 跳跃式监视 过程(计算) 模式识别(心理学) 学习迁移 人工神经网络 计算机视觉 图像(数学) 操作系统
作者
Inkyu Sa,Zongyuan Ge,Feras Dayoub,Ben Upcroft,Tristán Pérez,Chris McCool
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:16 (8): 1222-1222 被引量:836
标识
DOI:10.3390/s16081222
摘要

This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助kk采纳,获得10
刚刚
1秒前
1秒前
淡定醉薇发布了新的文献求助10
1秒前
GM完成签到 ,获得积分10
1秒前
Castiron完成签到,获得积分10
1秒前
慕青应助走走道疯了采纳,获得10
2秒前
可爱的函函应助桉韵沁采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
菠萝炒饭应助粥粥爱糊糊采纳,获得10
4秒前
4秒前
一种信仰完成签到 ,获得积分10
4秒前
sammie0637完成签到 ,获得积分10
4秒前
酷波er应助贝贝采纳,获得30
4秒前
ballistic完成签到,获得积分10
4秒前
FashionBoy应助czxchase采纳,获得10
4秒前
科研通AI2S应助默默安双采纳,获得10
4秒前
CipherSage应助大灰机小灰机采纳,获得10
4秒前
5秒前
6秒前
积极芷容完成签到,获得积分20
6秒前
6秒前
天真听筠完成签到 ,获得积分10
6秒前
简qiu发布了新的文献求助10
6秒前
7秒前
Fanfan完成签到 ,获得积分10
8秒前
Cookies完成签到,获得积分10
8秒前
852应助虚心茉莉采纳,获得10
8秒前
FK7发布了新的文献求助10
8秒前
肖小葵发布了新的文献求助10
8秒前
9秒前
9秒前
药药55发布了新的文献求助20
9秒前
ssssxr发布了新的文献求助10
9秒前
czxchase完成签到,获得积分10
10秒前
未晚完成签到,获得积分10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609