亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an applied photogrammetric approach

摄影测量学 封面(代数) 生物量(生态学) RGB颜色模型 遥感 摄影 人工智能 环境科学 计算机科学 计算机视觉 农业工程 工程类 地理 农学 生物 机械工程 艺术 视觉艺术
作者
Lukas Roth,Bernhard Streit
出处
期刊:Precision Agriculture [Springer Nature]
卷期号:19 (1): 93-114 被引量:68
标识
DOI:10.1007/s11119-017-9501-1
摘要

Easy-to-capture and robust plant status indicators are important factors when implementing precision agriculture techniques on fields. In this study, aerial red, green and blue color space (RGB) photography and near-infrared (NIR) photography was performed on an experimental field site with nine different cover crops. A lightweight unmanned aerial system (UAS) served as platform, consumer cameras as sensors. Photos were photogrammetrically processed to orthophotos and digital surface models (DSMs). In a first validation step, the spatial precision of RGB orthophotos (x and y, ± 0.1 m) and DSMs (z, ± 0.1 m) was determined. Then, canopy cover (CC), plant height (PH), normalized differenced vegetation index (NDVI), red edge inflection point (REIP), and green red vegetation index (GRVI) were extracted. In a second validation step, the PHs derived from the DSMs were compared with ground truth ruler measurements. A strong linear relationship was observed (R 2 = 0.80−0.84). Finally, destructive biomass samples were taken and compared with the remotely-sensed characteristics. Biomass correlated best with plant height (PH), and good approximations with linear regressions were found (R 2 = 0.74 for four selected species, R 2 = 0.58 for all nine species). CC and the vegetation indices (VIs) showed less significant and less strong overall correlations, but performed well for certain species. It is therefore evident that the use of DSM-based PHs provides a feasible approach to a species-independent non-destructive biomass determination, where the performance of VIs is more species-dependent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橱窗发布了新的文献求助10
6秒前
7秒前
14秒前
cccxq发布了新的文献求助10
20秒前
仙人不指路完成签到 ,获得积分10
24秒前
CodeCraft应助cccxq采纳,获得10
24秒前
FashionBoy应助橱窗采纳,获得10
26秒前
31秒前
dax大雄完成签到 ,获得积分10
34秒前
35秒前
科研小新发布了新的文献求助10
36秒前
橱窗完成签到,获得积分10
41秒前
41秒前
绿柏完成签到,获得积分10
41秒前
41秒前
Zq完成签到 ,获得积分10
42秒前
Petrichor完成签到,获得积分10
46秒前
Amber发布了新的文献求助10
47秒前
55秒前
赵赵发布了新的文献求助20
1分钟前
1分钟前
研友_VZG7GZ应助小玉采纳,获得10
1分钟前
NexusExplorer应助小玉采纳,获得10
1分钟前
领导范儿应助小玉采纳,获得10
1分钟前
小圆圈发布了新的文献求助10
1分钟前
JamesPei应助小玉采纳,获得10
1分钟前
共享精神应助小玉采纳,获得10
1分钟前
善学以致用应助小玉采纳,获得10
1分钟前
华仔应助小玉采纳,获得10
1分钟前
李健应助小玉采纳,获得10
1分钟前
桐桐应助小玉采纳,获得10
1分钟前
脑洞疼应助小玉采纳,获得10
1分钟前
CQ发布了新的文献求助10
1分钟前
搜集达人应助小玉采纳,获得10
1分钟前
丘比特应助小玉采纳,获得10
1分钟前
希望天下0贩的0应助小玉采纳,获得10
1分钟前
Lucas应助小玉采纳,获得10
1分钟前
田様应助小玉采纳,获得10
1分钟前
丘比特应助小玉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332