Electric-Double-Layer Mechanism of Surface Oxophilicity in Regulating the Alkaline Hydrogen Electrocatalytic Kinetics

化学 动力学 机制(生物学) 双层(生物学) 图层(电子) 无机化学 化学工程 有机化学 哲学 物理 认识论 量子力学 工程类
作者
Yaling Jiang,Peimeng Qiu,Qinghua Liu,Peng Li,Shengli Chen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c14511
摘要

Regulating the surface oxophilicity of the electrocatalyst is known as an efficient strategy to mitigate the order-of-magnitude kinetic slowdown of hydrogen electrocatalysis in a base, which is of great scientific and technological significance. So far, its mechanistic origin remains mainly ascribed to the bifunctional or electronic effects that revolve around the catalyst-intermediate interactions and is under extensive debate. In addition, the understanding from the perspective of interfacial electric-double-layer (EDL) structures, which should also strongly depend on the electrode property, is still lacking. Here, by decorating a Pt electrode with Mo, Ru, Rh, and Au metal atoms to tune surface oxophilicity and systematically combining electrochemical activity tests, in situ surface-enhanced infrared absorption spectroscopy, density functional theory calculation, and ab initio molecular dynamics simulation, we found that there exist consistent volcano-type relationships between *OH adsorption strength and alkaline hydrogen evolution activity, the stretching/bending vibration information on interfacial water, and the potential of zero charge (PZC) of the electrode. This demonstrates that the origin of surface oxophilicity in impacting the alkaline hydrogen electrocatalytic activity lies in its modification toward the electrode PZC, which thereby dictates the electric field strength, rigidity, and hydrogen bonding network structure in EDL and ultimately governs the interfacial proton transfer kinetics. These findings emphasize the importance of focusing on electrocatalytic interface structures to understand electrode property-dependent reaction kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thecastle发布了新的文献求助10
刚刚
刚刚
疯大仙外向太清完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
anitachiu1104发布了新的文献求助10
3秒前
liyi发布了新的文献求助30
3秒前
牧星发布了新的文献求助10
4秒前
贾哲宇发布了新的文献求助20
5秒前
JRF发布了新的文献求助10
5秒前
清爽的非笑完成签到 ,获得积分10
5秒前
JUN发布了新的文献求助10
6秒前
6秒前
7秒前
slr完成签到,获得积分10
7秒前
翁雁丝发布了新的文献求助10
7秒前
科研通AI5应助ylyn采纳,获得10
8秒前
8秒前
丁sir完成签到,获得积分10
8秒前
科研通AI5应助zz采纳,获得10
9秒前
FashionBoy应助尤珩采纳,获得10
10秒前
科研通AI5应助长情霸采纳,获得10
10秒前
thecastle完成签到,获得积分10
10秒前
莘莘完成签到,获得积分10
10秒前
坦率的师发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
彭tiantian完成签到 ,获得积分10
11秒前
12秒前
louis dai发布了新的文献求助30
12秒前
牛姐完成签到,获得积分10
13秒前
14秒前
moodys完成签到,获得积分10
15秒前
科研小民工应助奔跑石小猛采纳,获得200
15秒前
16秒前
太子乐完成签到,获得积分10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744585
求助须知:如何正确求助?哪些是违规求助? 3287576
关于积分的说明 10054111
捐赠科研通 3003748
什么是DOI,文献DOI怎么找? 1649214
邀请新用户注册赠送积分活动 785129
科研通“疑难数据库(出版商)”最低求助积分说明 750947