Idiosyncratic drug-induced liver injury (DILI) is a leading cause of drug attrition and/or withdrawal. The formation of reactive metabolites is widely accepted as a key factor contributing to idiosyncratic DILI. Therefore, identifying reactive metabolites has become a critical focus during lead optimization, and a combination of GSH-/cyano-trapping and cytochrome P450 inactivation studies is recommended to identify compounds with the potential to generate reactive metabolites. Daily dose, clinical indication, detoxication pathways, administration route and treatment duration are the most considerations when deprioritizing candidates that generate reactive metabolites. Removing the structural alerts is considered a pragmatic strategy for mitigating the risk associated with reactive metabolites, although this approach may sometimes exclude otherwise potent molecules. In this context, an in-depth insight into the structure-based reactive metabolite formation of organic functional groups can significantly aids in the rational design of drug candidates with improved safety profiles. The primary goal of this review is to delve into an analysis of the bioactivation mechanisms of organic functional groups and their potential detrimental effects with recent examples to assist medicinal chemists and metabolism scientists in designing safer drug candidates with a higher likelihood of success.