A Double‐Gradient All‐Organic Dielectric Polymer Film Achieving Superior Breakdown Strength and Energy Density

材料科学 聚合物 电介质 介电强度 复合材料 光电子学
作者
Yang Liu,Guo Tian,Yue Sun,Shenglong Wang,Longchao Huang,Xuelan Li,Tianpei Xu,Long Jin,Yulin Zou,Weili Deng,Weiqing Yang
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202411304
摘要

Ferroelectric polymers have drawn tremendous attention in film capacitors owing to their high permittivity and ease of processing. Nevertheless, the energy density of such materials is severely constrained due to inferior breakdown strength. To address this dilemma, a double-gradient multilayered all-organic dielectric composite film is proposed, fabricated via a simple layer-by-layer solution-casting process. The experimental results demonstrate that the composite film significantly suppresses the leakage current compared to the pristine films, resulting in remarkable enhancement of the insulation properties. The finite element simulation results further reveal that the optimized electric field distribution induced by the gradient structure and the carrier traps at the interfaces between the adjacent layers play a crucial role in impeding the propagation of the breakdown path. As a result, the developed dielectric film reaches an unexpected breakdown strength of 712 MV m-1 along with a high energy density of 19.68 J cm-3, surpassing the bench-mark biaxially oriented polypropylene as well as the existing ferroelectric-based composites reported in the recent works. The synergy of gradient and multilayered structure presented in this work offers a novel perspective and approach for the scalable fabrication of dielectric films with eminent capacitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助言全采纳,获得10
1秒前
1秒前
科研垃圾完成签到,获得积分10
2秒前
Mong那粒沙完成签到,获得积分10
3秒前
JY发布了新的文献求助10
4秒前
4秒前
Meow发布了新的文献求助10
6秒前
Hd完成签到,获得积分10
6秒前
Orange应助淳于汲采纳,获得10
7秒前
7秒前
xyz完成签到,获得积分10
7秒前
账户已注销应助JY采纳,获得20
8秒前
香蕉觅云应助妙aaa采纳,获得10
8秒前
研友_VZG7GZ应助pm采纳,获得10
8秒前
8秒前
9秒前
秋秋糖xte发布了新的文献求助10
9秒前
xyz发布了新的文献求助10
11秒前
morena发布了新的文献求助50
11秒前
12秒前
Cambridge发布了新的文献求助10
12秒前
14秒前
14秒前
CipherSage应助Bo采纳,获得10
15秒前
Minh23完成签到,获得积分10
15秒前
科研通AI5应助黒面包采纳,获得10
15秒前
lemon发布了新的文献求助10
17秒前
天天快乐应助xyz采纳,获得30
17秒前
17秒前
谢文强完成签到,获得积分10
18秒前
18秒前
miao发布了新的文献求助20
18秒前
chemj完成签到,获得积分20
19秒前
HO发布了新的文献求助10
20秒前
breaddog完成签到,获得积分10
21秒前
22秒前
毋宁发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849