Integrated Serum Pharmacochemistry and Network Pharmacology Used to Explore Potential Antidepressant Mechanisms of the Kaixin San.

化学 抗抑郁药 药理学 色谱法 内科学 医学 海马体
作者
Guoliang Dai,Deming Liu,Youjin Wang,Yanjun Wang,Qian Huang,Wenqing San,Xiaoyong Wang,Wenzheng Ju
出处
期刊:PubMed 卷期号:39 (4): e70041-e70041
标识
DOI:10.1002/bmc.70041
摘要

Kaixin San (KXS) is a classical prescription for the treatment of depression. However, the mechanism is not clear. In this study, serum pharmacochemistry, mediated by the UHPLC-Orbitrap Exploris 480 mass spectrometer, was used to identify compounds derived from the KXS-medicated serum. These components were used to construct a compound-target network for depression using a network pharmacology approach to predict potential biological targets of KXS. Subsequently, we established a mouse model of CUMS-induced depression and observed the antidepressant effect of KXS. The signalling pathways predicted by the network pharmacology were further validated in animal experiments. The results showed that 36 compounds were identified from the KXS-medicated serum. Based on this, 984 genes related to the compounds and 4966 genes related to depression were identified using network pharmacology. Critically, KEGG analysis identified the PI3K/Akt and NF-κB signalling pathways as the main pathways through which KXS exerts its antidepressant effect. KXS significantly alleviated depression-like behaviour and hippocampal histopathological changes in a mouse model of depression. Compared with the model group, the treatment of KXS significantly reduced the expression of protein targets in the PI3K/Akt/NF-κB signalling pathway. All these studies effectively corroborated the predicted results, confirming the feasibility of this integrated strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
反之完成签到,获得积分10
刚刚
共享精神应助Ylinda采纳,获得10
刚刚
壮观的沉鱼关注了科研通微信公众号
1秒前
qipupu222完成签到,获得积分10
2秒前
aldehyde应助沉溺于山野采纳,获得10
2秒前
怕黑的不惜完成签到,获得积分20
2秒前
科研通AI5应助wonhui采纳,获得10
2秒前
buder完成签到,获得积分10
3秒前
沉淀完成签到,获得积分20
3秒前
娃娃菜完成签到,获得积分10
4秒前
刘明生发布了新的文献求助10
4秒前
百里长青应助sadsada采纳,获得10
4秒前
5秒前
5秒前
5秒前
彩色忆雪完成签到,获得积分10
6秒前
6秒前
wangzhen完成签到,获得积分20
6秒前
wang666应助swordlee采纳,获得30
7秒前
nnn完成签到,获得积分10
7秒前
彩色忆雪发布了新的文献求助10
8秒前
霸气早晨发布了新的文献求助10
8秒前
赘婿应助万物安生采纳,获得10
8秒前
高中生发布了新的文献求助10
9秒前
孙pc完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
10秒前
小二郎应助qzj采纳,获得10
11秒前
11秒前
顾矜应助安安采纳,获得10
11秒前
12秒前
mqx完成签到 ,获得积分10
13秒前
peach发布了新的文献求助20
14秒前
lunlunya发布了新的文献求助20
14秒前
15秒前
wangzhen关注了科研通微信公众号
16秒前
胖胖应助爱笑半雪采纳,获得10
17秒前
chi发布了新的文献求助10
17秒前
17秒前
wwj发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126