SPMamba: State-space model is all you need in speech separation

分离(统计) 空格(标点符号) 国家(计算机科学) 状态空间 语音识别 计算机科学 数学 算法 机器学习 统计 操作系统
作者
Kai Li,Chen Guo
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2404.02063
摘要

In speech separation, both CNN- and Transformer-based models have demonstrated robust separation capabilities, garnering significant attention within the research community. However, CNN-based methods have limited modelling capability for long-sequence audio, leading to suboptimal separation performance. Conversely, Transformer-based methods are limited in practical applications due to their high computational complexity. Notably, within computer vision, Mamba-based methods have been celebrated for their formidable performance and reduced computational requirements. In this paper, we propose a network architecture for speech separation using a state-space model, namely SPMamba. We adopt the TF-GridNet model as the foundational framework and substitute its Transformer component with a bidirectional Mamba module, aiming to capture a broader range of contextual information. Our experimental results reveal an important role in the performance aspects of Mamba-based models. SPMamba demonstrates superior performance with a significant advantage over existing separation models in a dataset built on Librispeech. Notably, SPMamba achieves a substantial improvement in separation quality, with a 2.42 dB enhancement in SI-SNRi compared to the TF-GridNet. The source code for SPMamba is publicly accessible at https://github.com/JusperLee/SPMamba .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
Boniu发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
guli完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
ogotho发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
充电宝应助Lee采纳,获得10
4秒前
科研通AI6应助Ffan采纳,获得10
4秒前
愉快之槐完成签到,获得积分10
4秒前
4秒前
5秒前
star完成签到 ,获得积分10
5秒前
5秒前
5秒前
sunshitao发布了新的文献求助10
5秒前
sunshitao发布了新的文献求助10
6秒前
sunshitao发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354650
求助须知:如何正确求助?哪些是违规求助? 4486721
关于积分的说明 13967578
捐赠科研通 4387283
什么是DOI,文献DOI怎么找? 2410289
邀请新用户注册赠送积分活动 1402711
关于科研通互助平台的介绍 1376487