已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ANN-DPC: Density peak clustering by finding the adaptive nearest neighbors

聚类分析 k-最近邻算法 模式识别(心理学) 计算机科学 人工智能
作者
Huan Yan,Mingzhao Wang,Juanying Xie
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:294: 111748-111748 被引量:13
标识
DOI:10.1016/j.knosys.2024.111748
摘要

DPC(clustering by fast search and find of density peaks) is an efficient clustering algorithm. However, DPC and its variations usually cannot detect the appropriate cluster centers for a dataset containing sparse and dense clusters simultaneously, resulting in the unique clustering within a dataset cannot being found. To remedy these limitations, we propose an Adaptive Nearest Neighbor Density Peak Clustering algorithm, referred to as ANN-DPC. It introduces the adaptive nearest neighbors for a point, so as to define the accurate local density of the point. Moreover, it partitions points into super-score, core, linked and slave points, and proposes techniques to detect appropriate cluster centers through introducing super-core point with higher local density to absorb the other super-core points sharing adaptive nearest neighbors with it and the dependency vector for finding next cluster center. Furthermore, novel assignment strategies are proposed by leveraging the adaptive nearest neighbors combing with breadth first search and fuzzy weighted adaptive nearest neighbors, so as to assign non-center points to the most appropriate clusters. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of the proposed ANN-DPC algorithm over the counterparts in precisely detecting the cluster centers and the unique clustering within a dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝妮戴塔发布了新的文献求助20
1秒前
LLL发布了新的文献求助10
1秒前
star应助小么小采纳,获得10
1秒前
丘比特应助夏依瑶采纳,获得30
2秒前
乙酰水杨酸完成签到,获得积分10
3秒前
TIPHA发布了新的文献求助10
5秒前
6秒前
9秒前
蒋蒋蒋蒋发布了新的文献求助10
9秒前
幸福的含灵完成签到,获得积分10
9秒前
11秒前
深情安青应助陈益凡采纳,获得10
11秒前
11秒前
linda完成签到,获得积分10
11秒前
桐桐应助完美外绣采纳,获得10
12秒前
12秒前
充电宝应助TIPHA采纳,获得10
12秒前
大个应助XIAO QIANG采纳,获得30
12秒前
14秒前
15秒前
万能图书馆应助烟消云散采纳,获得10
16秒前
linda发布了新的文献求助10
16秒前
青年才俊发布了新的文献求助10
17秒前
爆米花应助麦芽采纳,获得10
17秒前
19秒前
20秒前
jasonjiang完成签到 ,获得积分0
21秒前
22秒前
23秒前
Q哈哈哈发布了新的文献求助10
24秒前
酷波er应助linda采纳,获得30
24秒前
25秒前
WXM发布了新的文献求助10
25秒前
xcc完成签到 ,获得积分10
25秒前
Xieyijing应助Alex采纳,获得10
26秒前
27秒前
热心一江发布了新的文献求助10
28秒前
28秒前
yangcong发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822