ANN-DPC: Density peak clustering by finding the adaptive nearest neighbors

聚类分析 k-最近邻算法 模式识别(心理学) 计算机科学 人工智能
作者
Huan Yan,Mingzhao Wang,Juanying Xie
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:294: 111748-111748 被引量:18
标识
DOI:10.1016/j.knosys.2024.111748
摘要

DPC(clustering by fast search and find of density peaks) is an efficient clustering algorithm. However, DPC and its variations usually cannot detect the appropriate cluster centers for a dataset containing sparse and dense clusters simultaneously, resulting in the unique clustering within a dataset cannot being found. To remedy these limitations, we propose an Adaptive Nearest Neighbor Density Peak Clustering algorithm, referred to as ANN-DPC. It introduces the adaptive nearest neighbors for a point, so as to define the accurate local density of the point. Moreover, it partitions points into super-score, core, linked and slave points, and proposes techniques to detect appropriate cluster centers through introducing super-core point with higher local density to absorb the other super-core points sharing adaptive nearest neighbors with it and the dependency vector for finding next cluster center. Furthermore, novel assignment strategies are proposed by leveraging the adaptive nearest neighbors combing with breadth first search and fuzzy weighted adaptive nearest neighbors, so as to assign non-center points to the most appropriate clusters. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of the proposed ANN-DPC algorithm over the counterparts in precisely detecting the cluster centers and the unique clustering within a dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助研友_LBorkn采纳,获得10
刚刚
炙热笑旋完成签到,获得积分10
1秒前
田様应助ding采纳,获得10
1秒前
喵喵喵完成签到,获得积分10
1秒前
SonRisa完成签到,获得积分10
1秒前
哭泣的花卷完成签到,获得积分10
1秒前
2秒前
2秒前
哈儿的跟班完成签到,获得积分10
2秒前
2秒前
潮湿梦完成签到,获得积分10
2秒前
关耳发布了新的文献求助10
3秒前
花火易逝完成签到,获得积分10
3秒前
简单点完成签到 ,获得积分10
3秒前
4秒前
4秒前
Juid应助茉行采纳,获得20
4秒前
黄晓完成签到,获得积分10
4秒前
橙子发布了新的文献求助10
4秒前
4秒前
XXXXL完成签到,获得积分10
5秒前
顾矜应助嘉平三十采纳,获得10
5秒前
嘟嘟完成签到 ,获得积分10
6秒前
6秒前
lastsnow完成签到 ,获得积分10
7秒前
汉堡包应助是玥玥啊采纳,获得10
7秒前
沙克几十块完成签到,获得积分10
7秒前
夏天不回来完成签到,获得积分10
8秒前
KAZEN完成签到 ,获得积分10
9秒前
9秒前
漂亮雨柏完成签到,获得积分20
9秒前
9秒前
zasideler完成签到,获得积分10
9秒前
9秒前
柳贯一完成签到,获得积分10
10秒前
51545645完成签到,获得积分10
10秒前
忧郁凡桃完成签到,获得积分10
10秒前
11秒前
科目三应助zhzh0618采纳,获得10
12秒前
Slemon完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977