Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes

弹性(材料科学) 中心性 计算机科学 还原(数学) 加权网络 多样性(控制论) 拓扑(电路) 交通拥挤 网格 运筹学 计算机网络 计量经济学 复杂网络 运输工程 数学 工程类 统计 物理 人工智能 组合数学 热力学 几何学 万维网
作者
Qing-Long Lu,Wenzhe Sun,Jiannan Dai,Jan‐Dirk Schmöcker,Constantinos Antoniou
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:247: 110095-110095 被引量:4
标识
DOI:10.1016/j.ress.2024.110095
摘要

Transportation system disruptions significantly impair transportation efficiency. This paper proposes new indicators derived from the Macroscopic Fundamental Diagram (MFD) dynamics before and after a disruption to evaluate its impact on traffic resilience. Considering that MFD is an intrinsic property of a homogeneously congested transportation network, the resilience losses due to congestion and network disruption are measured separately. The resilience loss is defined as the reduction in trip completion rate, comparing congested cases to uncongested cases or disrupted cases to undisrupted cases. The resilience loss hence also exists for an undisrupted network and is measurable by the proposed method. A Simulation of Urban MObility (SUMO) model is calibrated by real origin–destination patterns, to allow for experiments in scenarios of different demand variations and supply disruptions. Case studies are conducted in Munich, Germany and Kyoto, Japan to test the usefulness of the newly proposed indicators. We furthermore explore the relationship between resilience loss and network topological attributes such as centrality and connectivity from a variety of synthetic disruption experiments in Munich and Kyoto. We find that the resilience loss in a grid-like network as in Kyoto is less dependent on the degradation of network connectivity than in a ring-like network as in Munich.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助LiShin采纳,获得10
刚刚
wangye完成签到,获得积分10
1秒前
糜厉完成签到,获得积分10
2秒前
2秒前
希望天下0贩的0应助谢安采纳,获得10
2秒前
3秒前
3秒前
wangye发布了新的文献求助10
3秒前
拼搏起眸完成签到 ,获得积分20
4秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
小敦关注了科研通微信公众号
5秒前
最优解完成签到,获得积分10
5秒前
海棠听风完成签到,获得积分10
5秒前
WUYANG完成签到,获得积分10
6秒前
情怀应助javalin采纳,获得10
6秒前
7秒前
7秒前
思有完成签到 ,获得积分10
7秒前
德德发布了新的文献求助10
7秒前
无花果应助dpp采纳,获得10
7秒前
NexusExplorer应助YYY采纳,获得10
7秒前
8秒前
科研通AI2S应助心房子采纳,获得10
8秒前
jiao完成签到,获得积分10
8秒前
9秒前
9秒前
搜集达人应助哈哈大笑采纳,获得10
9秒前
Mr.Reese完成签到,获得积分10
9秒前
9秒前
孤独的珩完成签到,获得积分10
10秒前
Miracle发布了新的文献求助10
10秒前
zkwww完成签到 ,获得积分10
10秒前
汉堡包应助李来仪采纳,获得10
11秒前
11秒前
饱满以松完成签到 ,获得积分10
11秒前
开心瓜瓜瓜完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794