sEMG data driven-based anti-disturbance control enables adaptive interaction of lower limb rehabilitation exoskeleton

外骨骼 动力外骨骼 计算机科学 控制器(灌溉) 噪音(视频) 控制理论(社会学) 人工神经网络 模拟 扭矩 康复 步态 人工智能 物理医学与康复 控制(管理) 医学 生物 物理 热力学 农学 图像(数学) 物理疗法
作者
Gang Wang,Yongbai Liu,Keping Liu,Long Jin,Junzhi Yu,Zhongbo Sun
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106347-106347 被引量:1
标识
DOI:10.1016/j.bspc.2024.106347
摘要

The efficient human–machine interaction control is the core of human–machine integration, which can improve the tracking accuracy of the lower limb rehabilitation exoskeleton system and the compliance of human–machine cooperative movement. However, the non-ideal factors such as mechanical friction, model uncertainties, iteration errors and external interference in the training process undoubtedly bring potential dangers to the safety of rehabilitation training. Consequently, to escape unnecessary damage caused by external disturbances (especially the unbounded disturbances) during rehabilitation training, a noise-suppressing zeroing neural network human–machine interaction controller is developed in this work, which is based on the constructed human–machine coupling dynamic model and the active motion intention (active torque) of the subject identified by exploiting the deep convolutional neural network. The simulation experiments and statistical analyses verify that the present noise-suppressing zeroing neural network controller can be applied to monitor the lower limb rehabilitation exoskeleton for assisting the subjects in various task with the external disturbances,and the average root mean square error of the hip, knee and ankle joints' angles are 0.0015rad, 0.0051rad and 0.0056rad, respectively. Furthermore, a novel model predictive control is developed and analyzed based on noise-suppressing zeroing neural network controller, which can effectively constrain the angle and angular velocity of the lower limb rehabilitation exoskeleton. The root mean square errors of hip, knee and ankle joint angle are 0.0032rad, 0.0078rad, and 0.0085rad, respectively. Finally, the platform experiment verifies that the proposed controllers can be utilized to control the lower limb rehabilitation exoskeleton to assist the subjects in rehabilitation training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
居学尉完成签到,获得积分10
刚刚
受伤自行车完成签到,获得积分20
1秒前
仁爱的伯云完成签到,获得积分10
3秒前
李健应助MM采纳,获得10
3秒前
oceanao应助Whitney采纳,获得30
4秒前
Cary关注了科研通微信公众号
6秒前
7秒前
7秒前
9秒前
陈陈完成签到 ,获得积分10
10秒前
小秀完成签到,获得积分10
10秒前
Priscilla应助cjz采纳,获得10
11秒前
11秒前
美君发布了新的文献求助10
12秒前
闪闪完成签到 ,获得积分10
14秒前
14秒前
郑小七完成签到,获得积分10
14秒前
zzznznnn发布了新的文献求助10
16秒前
祝新竹发布了新的文献求助10
18秒前
Susan发布了新的文献求助10
18秒前
cj326完成签到 ,获得积分10
20秒前
木染完成签到,获得积分10
21秒前
22秒前
想毕业的小橙子完成签到,获得积分10
22秒前
诺hn完成签到 ,获得积分10
25秒前
谨慎飞丹完成签到 ,获得积分10
26秒前
robin完成签到,获得积分20
26秒前
祝新竹完成签到,获得积分10
26秒前
Xiaoshen完成签到,获得积分10
27秒前
领导范儿应助lss采纳,获得10
28秒前
29秒前
科研通AI2S应助cole采纳,获得10
29秒前
31秒前
Mikasaaaaa发布了新的文献求助10
31秒前
潇洒的灵萱完成签到,获得积分10
31秒前
小确幸发布了新的文献求助10
33秒前
Orange应助gdh采纳,获得10
33秒前
34秒前
38秒前
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155733
求助须知:如何正确求助?哪些是违规求助? 2806988
关于积分的说明 7871273
捐赠科研通 2465265
什么是DOI,文献DOI怎么找? 1312193
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892