Xiaoqing: A Q&A model for glaucoma based on LLMs

青光眼 可读性 体验式学习 医学 心理学 计算机科学 眼科 教育学 程序设计语言
作者
Xiaojuan Xue,Deshiwei Zhang,Chengyang Sun,Yiqiao Shi,Rongsheng Wang,Tao Tan,Peng Gao,Sujie Fan,Guangtao Zhai,Menghan Hu,Yue Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108399-108399
标识
DOI:10.1016/j.compbiomed.2024.108399
摘要

Glaucoma is one of the leading cause of blindness worldwide. Individuals affected by glaucoma, including patients and their family members, frequently encounter a deficit in dependable support beyond the confines of clinical environments. Seeking advice via the internet can be a difficult task due to the vast amount of disorganized and unstructured material available on these sites, nevertheless. This research explores how Large Language Models (LLMs) can be leveraged to better serve medical research and benefit glaucoma patients. We introduce Xiaoqing, a Natural Language Processing (NLP) model specifically tailored for the glaucoma field, detailing its development and deployment. To evaluate its effectiveness, we conducted two forms of experiments: comparative and experiential. In the comparative analysis, we presented 22 glaucoma-related questions in simplified Chinese to three medical NLP models (Xiaoqing LLMs, HuaTuo, Ivy GPT) and two general models (ChatGPT-3.5 and ChatGPT-4), covering a range of topics from basic glaucoma knowledge to treatment, surgery, research, management standards, and patient lifestyle. Responses were assessed for informativeness and readability. The experiential experiment involved glaucoma patients and non-patients interacting with Xiaoqing, collecting and analyzing their questions and feedback on the same criteria. The findings demonstrated that Xiaoqing notably outperformed the other models in terms of informativeness and readability, suggesting that Xiaoqing is a significant advancement in the management and treatment of glaucoma in China. We also provide a Web-based version of Xiaoqing, allowing readers to directly experience its functionality. The Web-based Xiaoqing is available at https://qa.glaucoma-assistant.com//qa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡爷小帅完成签到,获得积分10
1秒前
ned4speed完成签到,获得积分10
1秒前
934834发布了新的文献求助10
1秒前
YL完成签到,获得积分10
1秒前
小柒完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
zy123完成签到,获得积分10
2秒前
3秒前
恩對完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助愤怒的水壶采纳,获得10
3秒前
19发布了新的文献求助10
3秒前
sj完成签到,获得积分10
3秒前
十一发布了新的文献求助10
4秒前
Harry完成签到,获得积分10
4秒前
刘贤华完成签到 ,获得积分10
4秒前
CodeCraft应助手术刀采纳,获得10
5秒前
KD完成签到,获得积分10
5秒前
脑洞疼应助不要酸橘子采纳,获得10
5秒前
6秒前
阿典完成签到,获得积分10
7秒前
lilala发布了新的文献求助10
8秒前
H_C发布了新的文献求助10
8秒前
瀚森完成签到 ,获得积分10
9秒前
罗亚亚完成签到,获得积分10
10秒前
小二郎应助俊逸的代曼采纳,获得10
11秒前
赤子白仙完成签到,获得积分10
12秒前
12秒前
星忆眠完成签到,获得积分10
12秒前
整齐的泥猴桃完成签到,获得积分10
12秒前
小蘑菇应助林夕采纳,获得10
13秒前
19完成签到,获得积分10
13秒前
14秒前
直率的宛海完成签到,获得积分10
15秒前
酷炫葵阴完成签到,获得积分10
15秒前
叶未晞yi完成签到,获得积分10
15秒前
灵巧妙芙完成签到,获得积分10
16秒前
ania完成签到,获得积分10
16秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081823
求助须知:如何正确求助?哪些是违规求助? 2734862
关于积分的说明 7534680
捐赠科研通 2384387
什么是DOI,文献DOI怎么找? 1264312
科研通“疑难数据库(出版商)”最低求助积分说明 612614
版权声明 597600