Rapid quantitative analysis of soybean protein isolates secondary structure by two-dimensional correlation infrared spectroscopy through pH perturbation

蛋白质二级结构 无规线圈 红外光谱学 二维核磁共振波谱 红外线的 光谱学 偏最小二乘回归 近红外光谱 化学 分析化学(期刊) 生物系统 数学 色谱法 物理 生物 光学 立体化学 生物化学 有机化学 量子力学 统计
作者
Chang Liu,Ning Wang,Dandan Wu,Liqi Wang,Na Zhang,Dianyu Yu
出处
期刊:Food Chemistry [Elsevier]
卷期号:448: 139074-139074 被引量:5
标识
DOI:10.1016/j.foodchem.2024.139074
摘要

The infrared spectroscopy (IR) signal of protein is prone to being covered by impurity signals, and the accuracy of the secondary structure content calculated using spectral data is poor. To tackle this challenge, a rapid high-precision quantitative model for protein secondary structure was proposed. Firstly, a two-dimensional correlation calculation was performed based on 60 groups of soybean protein isolates (SPI) infrared spectroscopy data, resulting in a two-dimensional correlation infrared spectroscopy (2DCOS-IR). Subsequently, the optimal characteristic bands of the four secondary structures were extracted from the 2DCOS-IR. Ultimately, partial least squares (PLS), long short-term memory (LSTM), and bidirectional long short-term memory (BILSTM) algorithms were used to model the extracted characteristic bands and predict the content of SPI secondary structure. The findings suggested that BILSTM combined with 2DCOS-IR model (2DCOS-BILSTM) exhibited superior predictive performance. The prediction sets for α-helix, β-sheet, β-turn, and random coil were designated as 0.9257, 0.9077, 0.9476, and 0.8443, respectively, and their corresponding RMSEP values were 0.26, 0.48, 0.20, and 0.15. This strategy enhances the precision of IR and facilitates the rapid identification of secondary structure components within SPI, which is vital for the advancement of protein industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
善学以致用应助鹿lu采纳,获得10
2秒前
洁净白容发布了新的文献求助10
4秒前
sun2完成签到,获得积分10
4秒前
7秒前
852应助鹿lu采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
maox1aoxin应助科研通管家采纳,获得50
9秒前
小芳应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
9秒前
渊山完成签到,获得积分10
10秒前
英姑应助Nzqqq采纳,获得30
10秒前
渊山发布了新的文献求助10
12秒前
14秒前
小学猹发布了新的文献求助10
17秒前
冷酷的夏山完成签到 ,获得积分10
18秒前
丘比特应助少7一点8采纳,获得10
19秒前
dd完成签到,获得积分10
19秒前
纪无施发布了新的文献求助10
21秒前
Dylan完成签到,获得积分10
22秒前
marshyyy完成签到,获得积分10
23秒前
zll完成签到 ,获得积分10
25秒前
CipherSage应助纪无施采纳,获得10
27秒前
科研菜鸟完成签到 ,获得积分10
27秒前
黄晓杰2024完成签到 ,获得积分10
27秒前
宇宇完成签到 ,获得积分10
33秒前
Dylan发布了新的文献求助10
34秒前
Eating完成签到,获得积分10
36秒前
39秒前
星辰大海应助弱水三千采纳,获得10
40秒前
局外人完成签到,获得积分10
42秒前
竹萱完成签到,获得积分10
42秒前
jia完成签到 ,获得积分10
42秒前
43秒前
失陷完成签到,获得积分10
43秒前
新晋学术小生完成签到 ,获得积分10
44秒前
小蘑菇应助生动的白秋采纳,获得10
44秒前
Paperduoduo发布了新的文献求助30
51秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346174
求助须知:如何正确求助?哪些是违规求助? 2972939
关于积分的说明 8657179
捐赠科研通 2653379
什么是DOI,文献DOI怎么找? 1453124
科研通“疑难数据库(出版商)”最低求助积分说明 672752
邀请新用户注册赠送积分活动 662614