清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

HRD-Net: High resolution segmentation network with adaptive learning ability of retinal vessel features

增采样 分割 计算机科学 人工智能 特征(语言学) 卷积(计算机科学) 计算机视觉 模式识别(心理学) 人工神经网络 图像(数学) 哲学 语言学
作者
Jianhua Liu,Dongxin Zhao,Juncai Shen,Peng Geng,Ying Zhang,Jiaxin Yang,Ziqian Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108295-108295 被引量:11
标识
DOI:10.1016/j.compbiomed.2024.108295
摘要

Retinal segmentation is a crucial step in the early warning of human health conditions. However, retinal blood vessels possess complex curvature, irregular distribution, and contain multi-scale fine structures, which make the limited receptive field of regular convolution challenging to process their vascular details efficiently. Additionally, the encoder-decoder based network leads to irreversible spatial information loss because of multiple downsampling, resulting in over-segmentation and missed segmentation of the vessels. For this reason, we develop a high-resolution network based on Deformable Convolution v3, called HRD-Net. By constructing a high-resolution representation, the network allows special attention to be paid to the details of tiny blood vessels. The proposed feature enhancement cascade module based on Deformable Convolution v3 can flexibly adapt and capture the ever-changing morphology and intricate connections of retinal blood vessels, ensuring the continuity of vessel segmentation. In the output phase of the network, the proposed global aggregation module integrates full-resolution feature maps while suppressing redundant features, achieving an effective fusion of high-level semantic information and spatial detail information. In addition, we have re-examined the selection criteria for activation and normalization methods, and also refine the network architectures from a spatial domain perspective to release redundant computational loads. Testing on the DRIVE, STARE, and CHASE_DB1 datasets indicates that HRD-Net, with fewer parameters, outperforms existing segmentation methods on several evaluation metrics such as F1, ACC, SE, SP, AUC, and IOU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linuo完成签到,获得积分10
37秒前
毓雅完成签到,获得积分10
49秒前
Air完成签到 ,获得积分10
1分钟前
李歪歪完成签到 ,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
通科研完成签到 ,获得积分10
2分钟前
幻梦如歌完成签到,获得积分10
2分钟前
幻梦如歌发布了新的文献求助10
3分钟前
3分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
4分钟前
5分钟前
大熊发布了新的文献求助10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
大熊完成签到 ,获得积分10
5分钟前
5分钟前
斯寜应助神勇朝雪采纳,获得10
5分钟前
XQQDD完成签到,获得积分10
6分钟前
ike驳回了orixero应助
6分钟前
神勇朝雪完成签到,获得积分10
6分钟前
6分钟前
烟花应助学不动了采纳,获得10
6分钟前
6分钟前
ike发布了新的文献求助200
6分钟前
7分钟前
Orange应助科研通管家采纳,获得10
7分钟前
小木虫完成签到,获得积分10
7分钟前
8分钟前
小木虫发布了新的文献求助10
8分钟前
9分钟前
nanan发布了新的文献求助10
9分钟前
nanan完成签到,获得积分10
9分钟前
9分钟前
twk完成签到,获得积分10
9分钟前
英姑应助科研通管家采纳,获得20
9分钟前
twk发布了新的文献求助30
9分钟前
科研通AI5应助twk采纳,获得10
10分钟前
方白秋完成签到,获得积分10
10分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
11分钟前
流氓恐龙完成签到,获得积分10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080128
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652302
邀请新用户注册赠送积分活动 787340
科研通“疑难数据库(出版商)”最低求助积分说明 752096