Self-Supervised Learning for Real-World Super-Resolution from Dual and Multiple Zoomed Observations

人工智能 计算机科学 计算机视觉 基本事实 图像(数学) 特征(语言学) 图像分辨率 超分辨率 对偶(语法数字) 模式识别(心理学) 艺术 文学类 哲学 语言学
作者
Zhilu Zhang,Ruohao Wang,Hongzhi Zhang,Wangmeng Zuo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tpami.2024.3379736
摘要

In this paper, we consider two challenging issues in reference-based super-resolution (RefSR) for smartphone, (i) how to choose a proper reference image, and (ii) how to learn RefSR in a self-supervised manner. Particularly, we propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms. Firstly, considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the super-resolution (SR) of the lesser zoomed (ultra-wide) image, which gives us a chance to learn a deep network that performs SR from the dual zoomed observations (DZSR). Secondly, for self-supervised learning of DZSR, we take the telephoto image instead of an additional high-resolution image as the supervision information, and select a center patch from it as the reference to super-resolve the corresponding ultra-wide image patch. To mitigate the effect of the misalignment between ultra-wide low-resolution (LR) patch and telephoto ground-truth (GT) image during training, we first adopt patch-based optical flow alignment to obtain the warped LR, then further design an auxiliary-LR to guide the deforming of the warped LR features. To generate visually pleasing results, we present local overlapped sliced Wasserstein loss to better represent the perceptual difference between GT and output in the feature space. During testing, DZSR can be directly deployed to super-solve the whole ultra-wide image with the reference of the telephoto image. In addition, we further take multiple zoomed observations to explore self-supervised RefSR, and present a progressive fusion scheme for the effective utilization of reference images. Experiments show that our methods achieve better quantitative and qualitative performance against state-of-the-arts. The code and pre-trained models will be publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUCKY完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
Moonboss完成签到,获得积分10
3秒前
3秒前
MnO2fff完成签到,获得积分10
3秒前
暗月皇完成签到,获得积分10
4秒前
思源应助明亮朝雪采纳,获得10
5秒前
CodeCraft应助小燕子采纳,获得10
5秒前
5秒前
全缘郡完成签到 ,获得积分10
7秒前
欣欣子发布了新的文献求助10
7秒前
Tree完成签到 ,获得积分10
8秒前
一只滦完成签到,获得积分10
8秒前
9秒前
Chri_完成签到,获得积分10
10秒前
ziwen发布了新的文献求助10
10秒前
yu完成签到 ,获得积分10
11秒前
哈哈哈完成签到 ,获得积分10
11秒前
英吉利25发布了新的文献求助20
11秒前
量子星尘发布了新的文献求助10
12秒前
星辰大海应助黄梦娇采纳,获得10
13秒前
14秒前
Ari_Kun完成签到 ,获得积分10
15秒前
anders完成签到 ,获得积分10
17秒前
VDC发布了新的文献求助10
17秒前
ziwen完成签到,获得积分10
18秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
板栗子完成签到,获得积分10
21秒前
高帅发布了新的文献求助10
22秒前
wdfddzh完成签到,获得积分10
23秒前
科研通AI6应助zhzhzh采纳,获得10
23秒前
壮观的寒松完成签到,获得积分10
24秒前
24秒前
大道无形我有型完成签到,获得积分10
24秒前
田様应助开心就吃猕猴桃采纳,获得10
24秒前
南海神尼完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660019
求助须知:如何正确求助?哪些是违规求助? 4830914
关于积分的说明 15088949
捐赠科研通 4818636
什么是DOI,文献DOI怎么找? 2578700
邀请新用户注册赠送积分活动 1533328
关于科研通互助平台的介绍 1492061