Self-Supervised Learning for Real-World Super-Resolution from Dual and Multiple Zoomed Observations

人工智能 计算机科学 计算机视觉 基本事实 图像(数学) 特征(语言学) 图像分辨率 超分辨率 对偶(语法数字) 模式识别(心理学) 艺术 文学类 哲学 语言学
作者
Zhilu Zhang,Ruohao Wang,Hongzhi Zhang,Wangmeng Zuo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tpami.2024.3379736
摘要

In this paper, we consider two challenging issues in reference-based super-resolution (RefSR) for smartphone, (i) how to choose a proper reference image, and (ii) how to learn RefSR in a self-supervised manner. Particularly, we propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms. Firstly, considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the super-resolution (SR) of the lesser zoomed (ultra-wide) image, which gives us a chance to learn a deep network that performs SR from the dual zoomed observations (DZSR). Secondly, for self-supervised learning of DZSR, we take the telephoto image instead of an additional high-resolution image as the supervision information, and select a center patch from it as the reference to super-resolve the corresponding ultra-wide image patch. To mitigate the effect of the misalignment between ultra-wide low-resolution (LR) patch and telephoto ground-truth (GT) image during training, we first adopt patch-based optical flow alignment to obtain the warped LR, then further design an auxiliary-LR to guide the deforming of the warped LR features. To generate visually pleasing results, we present local overlapped sliced Wasserstein loss to better represent the perceptual difference between GT and output in the feature space. During testing, DZSR can be directly deployed to super-solve the whole ultra-wide image with the reference of the telephoto image. In addition, we further take multiple zoomed observations to explore self-supervised RefSR, and present a progressive fusion scheme for the effective utilization of reference images. Experiments show that our methods achieve better quantitative and qualitative performance against state-of-the-arts. The code and pre-trained models will be publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Martina采纳,获得10
1秒前
1秒前
哩哩发布了新的文献求助10
2秒前
albertxin完成签到,获得积分10
2秒前
2秒前
海森堡发布了新的文献求助10
3秒前
小生不才完成签到 ,获得积分10
4秒前
Ledecky完成签到,获得积分10
4秒前
4秒前
123发布了新的文献求助10
6秒前
wangli发布了新的文献求助10
7秒前
8秒前
10秒前
不想长大完成签到,获得积分10
10秒前
天真秋寒发布了新的文献求助10
10秒前
大个应助鱼鱼子999采纳,获得10
10秒前
11秒前
11秒前
13秒前
Seven完成签到,获得积分10
14秒前
共享精神应助wxj采纳,获得10
14秒前
路过的发布了新的文献求助10
15秒前
123完成签到,获得积分10
15秒前
小蘑菇应助曾hf采纳,获得10
16秒前
16秒前
深情安青应助李小麻采纳,获得10
16秒前
17秒前
solar发布了新的文献求助10
17秒前
17秒前
迟大猫应助玩命的曼冬采纳,获得10
18秒前
隐形曼青应助哈哈哈采纳,获得10
18秒前
19秒前
20秒前
ju龙哥发布了新的文献求助10
20秒前
张冰倩完成签到 ,获得积分10
22秒前
王一发布了新的文献求助10
23秒前
徐老师发布了新的文献求助10
23秒前
wxj完成签到,获得积分10
23秒前
BZPL发布了新的文献求助10
24秒前
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084