Self-Supervised Learning for Real-World Super-Resolution from Dual and Multiple Zoomed Observations

人工智能 计算机科学 计算机视觉 基本事实 图像(数学) 特征(语言学) 图像分辨率 超分辨率 对偶(语法数字) 模式识别(心理学) 艺术 文学类 哲学 语言学
作者
Zhilu Zhang,Ruohao Wang,Hongzhi Zhang,Wangmeng Zuo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tpami.2024.3379736
摘要

In this paper, we consider two challenging issues in reference-based super-resolution (RefSR) for smartphone, (i) how to choose a proper reference image, and (ii) how to learn RefSR in a self-supervised manner. Particularly, we propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms. Firstly, considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the super-resolution (SR) of the lesser zoomed (ultra-wide) image, which gives us a chance to learn a deep network that performs SR from the dual zoomed observations (DZSR). Secondly, for self-supervised learning of DZSR, we take the telephoto image instead of an additional high-resolution image as the supervision information, and select a center patch from it as the reference to super-resolve the corresponding ultra-wide image patch. To mitigate the effect of the misalignment between ultra-wide low-resolution (LR) patch and telephoto ground-truth (GT) image during training, we first adopt patch-based optical flow alignment to obtain the warped LR, then further design an auxiliary-LR to guide the deforming of the warped LR features. To generate visually pleasing results, we present local overlapped sliced Wasserstein loss to better represent the perceptual difference between GT and output in the feature space. During testing, DZSR can be directly deployed to super-solve the whole ultra-wide image with the reference of the telephoto image. In addition, we further take multiple zoomed observations to explore self-supervised RefSR, and present a progressive fusion scheme for the effective utilization of reference images. Experiments show that our methods achieve better quantitative and qualitative performance against state-of-the-arts. The code and pre-trained models will be publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
guons发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
虚心的不二完成签到 ,获得积分10
3秒前
xuxiaoyan发布了新的文献求助10
3秒前
3秒前
江脸脸完成签到,获得积分10
4秒前
JIERAN发布了新的文献求助10
4秒前
乐乐应助颜好采纳,获得10
4秒前
5秒前
5秒前
搞份炸鸡778完成签到,获得积分10
5秒前
尉迟希望发布了新的文献求助10
6秒前
向北完成签到 ,获得积分10
6秒前
莫默完成签到,获得积分10
7秒前
着急的语海完成签到,获得积分10
7秒前
7秒前
个性的汲发布了新的文献求助10
7秒前
mangle完成签到,获得积分10
8秒前
寒冷沛柔完成签到 ,获得积分10
9秒前
林狗完成签到,获得积分10
9秒前
活力的驳发布了新的文献求助30
9秒前
taimeili完成签到,获得积分10
10秒前
自强不息完成签到,获得积分10
10秒前
小马甲应助yeyeye采纳,获得10
10秒前
洪云峰发布了新的文献求助30
10秒前
Fei发布了新的文献求助10
10秒前
10秒前
11秒前
脑洞疼应助学习采纳,获得10
13秒前
13秒前
梅西完成签到 ,获得积分10
14秒前
爱糖果的木完成签到,获得积分10
15秒前
zzz关闭了zzz文献求助
15秒前
LWJJNU完成签到 ,获得积分10
17秒前
不准吃烤肉完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149