阳极
纳米棒
材料科学
水溶液
离子
化学工程
电化学
无机化学
纳米技术
化学
电极
有机化学
物理化学
工程类
作者
Shobhnath P. Gupta,Vishal Kotha,Pravin S. Walke,Leela S. Panchakarla
标识
DOI:10.1016/j.jpowsour.2024.234500
摘要
Metal dissolution and solid electrolyte interface layer growth are the most challenging issues in a reversible aqueous Zn-ion battery. To address this issue, an electrolyte-material marriage must be devise. Herein, we have develop the unique hydrate WO3.0.33H2O nanorods that integrate the layers and hexagonal tunnel structures for an aqueous Zn-ion battery. However, the one-dimensional morphology and confinement of the hydrate molecules of WO3.0.33H2O nanorods enable the superhighway and sub-second electron transport. Owing to this unique property, WO3.0.33H2O nanorods exhibit a capacity of 91 mAh g−1, which is two-fold higher than the three-dimensional WO3 cube in 1 M ZnCl2 electrolyte. Additionally, WO3.0.33H2O nanorods exhibit excellent durability and coulombic efficiency of 94 % and 99 % after 3000 cycles, respectively. To further examine the electrolyte suitability, the WO3.0.33H2O nanorods show excellent reversibility of the insertion and deinsertion of the Zn2+ ion in 1 m ZnCl2 compares to 1 M ZnSO4 and 1 M Zn(CH3COO)2 electrolytes. Therefore, this unique construction of hydrates WO3.0.33H2O nanorods would be a new avenue for designing the anode materials for a reversible aqueous Zn-ion battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI