Multi-branch myocardial infarction detection and localization framework based on multi-instance learning and domain knowledge

医学诊断 计算机科学 人工智能 心肌梗塞 领域(数学分析) 过程(计算) 可靠性(半导体) 鉴定(生物学) 领域知识 模式识别(心理学) 医学 功率(物理) 心脏病学 放射科 数学 物理 数学分析 植物 量子力学 生物 操作系统
作者
Xinyue Li,Yangcheng Huang,Yixin Ning,Ming-Jie Wang,Wenjie Cai
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:45 (4): 045009-045009
标识
DOI:10.1088/1361-6579/ad3d25
摘要

Abstract Objective . Myocardial infarction (MI) is a serious cardiovascular disease that can cause irreversible damage to the heart, making early identification and treatment crucial. However, automatic MI detection and localization from an electrocardiogram (ECG) remain challenging. In this study, we propose two models, MFB-SENET and MFB-DMIL, for MI detection and localization, respectively. Approach . The MFB-SENET model is designed to detect MI, while the MFB-DMIL model is designed to localize MI. The MI localization model employs a specialized attention mechanism to integrate multi-instance learning with domain knowledge. This approach incorporates handcrafted features and introduces a new loss function called lead-loss, to improve MI localization. Grad-CAM is employed to visualize the decision-making process. Main Results. The proposed method was evaluated on the PTB and PTB-XL databases. Under the inter-patient scheme, the accuracy of MI detection and localization on the PTB database reached 93.88% and 67.17%, respectively. The accuracy of MI detection and localization on the PTB-XL database were 94.89% and 85.83%, respectively. Significance . Our method achieved comparable or better performance than other state-of-the-art algorithms. The proposed method combined deep learning and medical domain knowledge, demonstrates effectiveness and reliability, holding promise as an efficient MI diagnostic tool to assist physicians in formulating accurate diagnoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助唐人雄采纳,获得10
刚刚
刚刚
123zyx发布了新的文献求助10
刚刚
KYT完成签到 ,获得积分10
1秒前
1秒前
故笺发布了新的文献求助10
1秒前
jnoker应助奋斗幼菱采纳,获得20
2秒前
2秒前
爱静静应助stephen采纳,获得10
2秒前
记忆碎片关注了科研通微信公众号
3秒前
俏皮元珊发布了新的文献求助10
3秒前
开放怀亦发布了新的文献求助10
4秒前
SciGPT应助labxgr采纳,获得10
4秒前
默默紊发布了新的文献求助10
5秒前
神经娃完成签到,获得积分10
7秒前
zzc完成签到,获得积分20
8秒前
10秒前
10秒前
10秒前
11秒前
邵血茗完成签到,获得积分10
11秒前
斯文败类应助薛定谔的猫采纳,获得10
12秒前
12秒前
13秒前
伶俐如南发布了新的文献求助30
13秒前
江雁发布了新的文献求助10
13秒前
13秒前
Varonica完成签到,获得积分10
14秒前
14秒前
stephen完成签到,获得积分10
15秒前
16秒前
pcr163应助xiaofei666采纳,获得100
16秒前
鹿茸与共发布了新的文献求助10
17秒前
17秒前
18秒前
wjxcl完成签到,获得积分10
18秒前
123zyx完成签到,获得积分10
18秒前
Akim应助温暖寻雪采纳,获得10
19秒前
害羞猫咪完成签到,获得积分10
19秒前
Hello应助Mr.Young采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312665
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523372
捐赠科研通 2620973
什么是DOI,文献DOI怎么找? 1433198
科研通“疑难数据库(出版商)”最低求助积分说明 664918
邀请新用户注册赠送积分活动 650255