IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images

分而治之算法 云计算 计算机科学 过程(计算) 扩散 数字鸿沟 扩散过程 遥感 迭代和增量开发 气象学 算法 地质学 万维网 创新扩散 物理 互联网 地理 软件工程 操作系统 热力学 知识管理
作者
Meilin Wang,Yexing Song,Pengxu Wei,Xiaoyu Xian,Yukai Shi,Liang Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3378720
摘要

Deep learning technologies have demonstrated their effectiveness in removing cloud cover from optical remote-sensing images. Convolutional Neural Networks (CNNs) exert dominance in the cloud removal tasks. However, constrained by the inherent limitations of convolutional operations, CNNs can address only a modest fraction of cloud occlusion. In recent years, diffusion models have achieved state-of-the-art (SOTA) proficiency in image generation and reconstruction due to their formidable generative capabilities. Inspired by the rapid development of diffusion models, we first present an iterative diffusion process for cloud removal (IDF-CR), which exhibits a strong generative capabilities to achieve component divide-and-conquer cloud removal. IDF-CR consists of a pixel space cloud removal module (Pixel-CR) and a latent space iterative noise diffusion network (IND). Specifically, IDF-CR is divided into two-stage models that address pixel space and latent space. The two-stage model facilitates a strategic transition from preliminary cloud reduction to meticulous detail refinement. In the pixel space stage, Pixel-CR initiates the processing of cloudy images, yielding a suboptimal cloud removal prior to providing the diffusion model with prior cloud removal knowledge. In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output. We refine the Stable Diffusion by implementing ControlNet. In addition, an unsupervised iterative noise refinement (INR) module is introduced for diffusion model to optimize the distribution of the predicted noise, thereby enhancing advanced detail recovery. Our model performs best with other SOTA methods, including image reconstruction and optical remote-sensing cloud removal on the optical remote-sensing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九命猫发布了新的文献求助30
刚刚
aldehyde应助xfxx采纳,获得10
刚刚
dengxu完成签到,获得积分10
1秒前
远静完成签到 ,获得积分10
1秒前
Jasper应助3dyf采纳,获得10
2秒前
伯劳发布了新的文献求助10
2秒前
小葡萄完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
顺心灵雁完成签到,获得积分10
3秒前
朴素的清完成签到 ,获得积分10
4秒前
tao完成签到 ,获得积分10
4秒前
FceEar发布了新的文献求助10
4秒前
大个应助细腻的仙人掌采纳,获得10
4秒前
6秒前
6秒前
6秒前
热心的代桃完成签到,获得积分10
7秒前
火星上仰完成签到,获得积分10
7秒前
思琪HMH发布了新的文献求助10
7秒前
Hungrylunch应助HJJHJH采纳,获得20
7秒前
8秒前
8秒前
香蕉觅云应助pass采纳,获得30
8秒前
freanlingka发布了新的文献求助10
8秒前
科研通AI5应助小葡萄采纳,获得10
8秒前
星落枝头发布了新的文献求助10
10秒前
10秒前
orixero应助啦啦啦~采纳,获得10
10秒前
11秒前
NexusExplorer应助hugeng采纳,获得10
11秒前
12秒前
12秒前
自觉的一一完成签到,获得积分10
12秒前
清秀从霜完成签到,获得积分10
13秒前
Lily发布了新的文献求助10
14秒前
感动的一德完成签到,获得积分10
14秒前
14秒前
乐乐应助sylnd126采纳,获得10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339