Analysis and comparison of feature selection methods towards performance and stability

可解释性 特征选择 计算机科学 维数之咒 理论(学习稳定性) 冗余(工程) 选择(遗传算法) Python(编程语言) 人工智能 机器学习 降维 最小冗余特征选择 数据挖掘 操作系统
作者
Matheus Cezimbra Barbieri,Bruno Iochins Grisci,Márcio Dorn
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123667-123667 被引量:26
标识
DOI:10.1016/j.eswa.2024.123667
摘要

The amount of gathered data is increasing at unprecedented rates for machine learning applications such as natural language processing, computer vision, and bioinformatics. This increase implies a higher number of samples and features; thus, some problems regarding highly dimensional data arise. The curse of dimensionality, small samples, noisy or redundant features, and biased data are among them. Feature selection is fundamental to dealing with such problems. It reduces the data dimensionality by selecting the most relevant and less redundant features. Thus reducing the computational cost, improving accuracy, and enhancing the data's interpretability to machine learning models and domain experts. However, there are several selector options from which to choose. This work compares some of the most representative algorithms from different feature selection groups regarding a broad range of measures, several datasets, and different strategies from diverse perspectives. We employ metrics to appraise selection accuracy, selection redundancy, prediction performance, algorithmic stability, selection reliability, and computational time of several feature selection algorithms. We developed and shared a new open Python framework to benchmark the algorithms. The results highlight the strengths and weaknesses of these algorithms and can guide their application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
明亮小馒头完成签到,获得积分10
1秒前
猴王完成签到,获得积分10
2秒前
天天摸鱼完成签到,获得积分10
3秒前
青丘提案完成签到,获得积分10
3秒前
4秒前
苗苗完成签到,获得积分10
4秒前
英俊的铭应助congcong采纳,获得10
4秒前
睡不醒的喵完成签到,获得积分10
4秒前
5秒前
不入完成签到,获得积分10
5秒前
6秒前
6秒前
研友_方达完成签到,获得积分10
8秒前
8秒前
猫南北完成签到,获得积分10
8秒前
CodeCraft应助青丘提案采纳,获得10
9秒前
ljy完成签到,获得积分10
9秒前
。。。发布了新的文献求助10
10秒前
11秒前
mp5完成签到,获得积分10
13秒前
Zuya发布了新的文献求助10
14秒前
Surly完成签到,获得积分10
14秒前
大团长完成签到,获得积分10
15秒前
chenc发布了新的文献求助30
16秒前
小杭76应助长情的雅绿采纳,获得10
17秒前
搜集达人应助缓慢的书蝶采纳,获得10
18秒前
daixan89完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188