Analysis and comparison of feature selection methods towards performance and stability

可解释性 特征选择 计算机科学 维数之咒 理论(学习稳定性) 冗余(工程) 选择(遗传算法) Python(编程语言) 人工智能 机器学习 降维 最小冗余特征选择 数据挖掘 操作系统
作者
Matheus Cezimbra Barbieri,Bruno Iochins Grisci,Márcio Dorn
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123667-123667 被引量:9
标识
DOI:10.1016/j.eswa.2024.123667
摘要

The amount of gathered data is increasing at unprecedented rates for machine learning applications such as natural language processing, computer vision, and bioinformatics. This increase implies a higher number of samples and features; thus, some problems regarding highly dimensional data arise. The curse of dimensionality, small samples, noisy or redundant features, and biased data are among them. Feature selection is fundamental to dealing with such problems. It reduces the data dimensionality by selecting the most relevant and less redundant features. Thus reducing the computational cost, improving accuracy, and enhancing the data's interpretability to machine learning models and domain experts. However, there are several selector options from which to choose. This work compares some of the most representative algorithms from different feature selection groups regarding a broad range of measures, several datasets, and different strategies from diverse perspectives. We employ metrics to appraise selection accuracy, selection redundancy, prediction performance, algorithmic stability, selection reliability, and computational time of several feature selection algorithms. We developed and shared a new open Python framework to benchmark the algorithms. The results highlight the strengths and weaknesses of these algorithms and can guide their application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tennisgirl完成签到 ,获得积分10
刚刚
葫芦娃大铁锤完成签到 ,获得积分10
刚刚
msl2023完成签到,获得积分10
1秒前
总有些许惊喜完成签到,获得积分10
1秒前
怕黑的蹇完成签到,获得积分10
1秒前
江小鱼在查文献完成签到,获得积分10
1秒前
科研通AI5应助俞思含采纳,获得10
1秒前
11111112222完成签到,获得积分10
1秒前
义气的巨人完成签到,获得积分10
1秒前
chen完成签到,获得积分10
2秒前
3秒前
MZ完成签到,获得积分0
3秒前
liuhui完成签到 ,获得积分10
3秒前
魁梧的映萱完成签到,获得积分10
3秒前
4秒前
JW完成签到,获得积分10
4秒前
4秒前
5秒前
qinqiny完成签到 ,获得积分10
5秒前
王涴宁完成签到,获得积分10
5秒前
6秒前
科研小白完成签到 ,获得积分10
6秒前
不想长大完成签到 ,获得积分10
6秒前
nuonuomimi完成签到,获得积分10
6秒前
MX001完成签到,获得积分10
6秒前
dxftx完成签到,获得积分10
7秒前
7秒前
开心妍完成签到 ,获得积分10
7秒前
silentJeremy发布了新的文献求助10
8秒前
8秒前
kingwill应助Gilana采纳,获得20
8秒前
8秒前
一个左正蹬完成签到,获得积分10
9秒前
三桥完成签到,获得积分10
9秒前
10秒前
supertkeb完成签到,获得积分10
10秒前
ZY完成签到,获得积分10
11秒前
庄怀逸完成签到 ,获得积分10
12秒前
wenwen完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890