Analysis and comparison of feature selection methods towards performance and stability

可解释性 特征选择 计算机科学 维数之咒 理论(学习稳定性) 冗余(工程) 选择(遗传算法) Python(编程语言) 人工智能 机器学习 降维 最小冗余特征选择 数据挖掘 操作系统
作者
Matheus Cezimbra Barbieri,Bruno Iochins Grisci,Márcio Dorn
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123667-123667 被引量:26
标识
DOI:10.1016/j.eswa.2024.123667
摘要

The amount of gathered data is increasing at unprecedented rates for machine learning applications such as natural language processing, computer vision, and bioinformatics. This increase implies a higher number of samples and features; thus, some problems regarding highly dimensional data arise. The curse of dimensionality, small samples, noisy or redundant features, and biased data are among them. Feature selection is fundamental to dealing with such problems. It reduces the data dimensionality by selecting the most relevant and less redundant features. Thus reducing the computational cost, improving accuracy, and enhancing the data's interpretability to machine learning models and domain experts. However, there are several selector options from which to choose. This work compares some of the most representative algorithms from different feature selection groups regarding a broad range of measures, several datasets, and different strategies from diverse perspectives. We employ metrics to appraise selection accuracy, selection redundancy, prediction performance, algorithmic stability, selection reliability, and computational time of several feature selection algorithms. We developed and shared a new open Python framework to benchmark the algorithms. The results highlight the strengths and weaknesses of these algorithms and can guide their application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
axt发布了新的文献求助10
2秒前
linmo发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
科目三应助方向采纳,获得10
4秒前
5秒前
6秒前
8秒前
hucanming完成签到,获得积分10
10秒前
哇wwwww发布了新的文献求助10
10秒前
kaka发布了新的文献求助10
10秒前
10秒前
10秒前
flymove发布了新的文献求助10
12秒前
阿鲁发布了新的文献求助10
12秒前
科研dog发布了新的文献求助10
12秒前
12秒前
556677y完成签到,获得积分20
13秒前
14秒前
Ava应助axt采纳,获得10
14秒前
开心啵啵应助fffffffq采纳,获得10
16秒前
苏哈托发布了新的文献求助10
16秒前
贺世儒发布了新的文献求助10
16秒前
bkagyin应助噜噜晓采纳,获得10
17秒前
跑在颖发布了新的文献求助10
18秒前
yaruyou发布了新的文献求助30
18秒前
眰恦完成签到 ,获得积分10
19秒前
19秒前
Qiao应助吱哦周采纳,获得10
19秒前
一个有点长的序完成签到 ,获得积分10
19秒前
20秒前
缓冲中发布了新的文献求助10
20秒前
希望天下0贩的0应助bound采纳,获得10
20秒前
斯文败类应助科研dog采纳,获得10
21秒前
21秒前
热心市民小红花应助Zora采纳,获得10
21秒前
hucanming发布了新的文献求助10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371