Analysis and comparison of feature selection methods towards performance and stability

可解释性 特征选择 计算机科学 维数之咒 理论(学习稳定性) 冗余(工程) 选择(遗传算法) Python(编程语言) 人工智能 机器学习 降维 最小冗余特征选择 数据挖掘 操作系统
作者
Matheus Cezimbra Barbieri,Bruno Iochins Grisci,Márcio Dorn
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123667-123667 被引量:9
标识
DOI:10.1016/j.eswa.2024.123667
摘要

The amount of gathered data is increasing at unprecedented rates for machine learning applications such as natural language processing, computer vision, and bioinformatics. This increase implies a higher number of samples and features; thus, some problems regarding highly dimensional data arise. The curse of dimensionality, small samples, noisy or redundant features, and biased data are among them. Feature selection is fundamental to dealing with such problems. It reduces the data dimensionality by selecting the most relevant and less redundant features. Thus reducing the computational cost, improving accuracy, and enhancing the data's interpretability to machine learning models and domain experts. However, there are several selector options from which to choose. This work compares some of the most representative algorithms from different feature selection groups regarding a broad range of measures, several datasets, and different strategies from diverse perspectives. We employ metrics to appraise selection accuracy, selection redundancy, prediction performance, algorithmic stability, selection reliability, and computational time of several feature selection algorithms. We developed and shared a new open Python framework to benchmark the algorithms. The results highlight the strengths and weaknesses of these algorithms and can guide their application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助zill采纳,获得10
1秒前
humorlife完成签到,获得积分10
1秒前
1秒前
朴素羊完成签到,获得积分10
2秒前
3秒前
qwf完成签到 ,获得积分10
4秒前
jdx完成签到 ,获得积分10
4秒前
大晟归来完成签到,获得积分10
4秒前
hu完成签到,获得积分10
4秒前
充电宝应助湛刘佳采纳,获得10
4秒前
香蕉觅云应助初七采纳,获得30
4秒前
精明的秋完成签到,获得积分10
5秒前
dear_xiaokuan发布了新的文献求助10
5秒前
5秒前
小脚丫完成签到,获得积分10
5秒前
5秒前
5秒前
laola发布了新的文献求助10
5秒前
Ava应助不爱吃鱼的猫采纳,获得10
6秒前
勤奋小张发布了新的文献求助10
7秒前
丘比特应助启航采纳,获得10
7秒前
zho关闭了zho文献求助
9秒前
9秒前
LM完成签到,获得积分10
9秒前
李爱国应助KKLD采纳,获得10
10秒前
完美世界应助MOD采纳,获得10
10秒前
Lucas完成签到,获得积分10
10秒前
hehe完成签到,获得积分10
11秒前
11秒前
带久发布了新的文献求助10
11秒前
背后白梦发布了新的文献求助10
11秒前
12秒前
鲁老九完成签到 ,获得积分10
12秒前
上官若男应助eve采纳,获得10
12秒前
凹凸先森应助2023jqh采纳,获得10
12秒前
12秒前
娜娜发布了新的文献求助10
13秒前
13秒前
空白的晚安完成签到,获得积分10
13秒前
qishi完成签到,获得积分10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931