材料科学
热电效应
电子迁移率
兴奋剂
热导率
光电子学
载流子寿命
Crystal(编程语言)
大气温度范围
晶界
塞贝克系数
分析化学(期刊)
硅
化学
微观结构
复合材料
热力学
物理
色谱法
计算机科学
程序设计语言
作者
Siqi Wang,Yi Wen,Yingcai Zhu,Ziyuan Wang,Dongrui Liu,Junqing Zheng,Shaoping Zhan,Hongyao Xie,Zhen‐Hua Ge,Xiang Gao,Qian Cao,Cheng Chang,Li‐Dong Zhao
出处
期刊:Small
[Wiley]
日期:2024-04-19
卷期号:20 (32)
被引量:5
标识
DOI:10.1002/smll.202400866
摘要
Abstract The scarcity of Te hampers the widespread use of Bi 2 Te 3 ‐based thermoelectric modules. Here, the thermoelectric module potential of PbSe is investigated by improving its carrier mobility. Initially, large PbSe crystals are grown with the temperature gradient method to mitigate grain boundary effects on carrier transport. Subsequently, light doping with <1mole‰ halogens (Cl/Br/I) increases room‐temperature carrier mobility to ~1600 cm 2 V −1 s −1 , achieved by reducing carrier concentration compared to traditional heavy doping. Crystal growth design and light doping enhance carrier mobility without affecting effective mass, resulting in a high power factor ~40 µW cm −1 K −2 in PbSe‐Cl/Br/I crystals at 300 K. Additionally, Cl/Br/I doping reduces thermal conductivity and bipolar diffusion, leading to significantly lower thermal conductivity at high temperature. Enhanced carrier mobility and suppressed bipolar effect boost ZT values across the entire temperature range in n‐type PbSe‐Cl/Br/I crystals. Specifically, ZT values of PbSe‐Br crystal reach ~0.6 at 300 K, ~1.2 at 773 K, and the average ZT ( ZT ave ) reaches ~1.0 at 300–773 K. Ultimately, ~5.8% power generation efficiency in a PbSe single leg with a maximum temperature cooling difference of 40 K with 7‐pair modules is achieved. These results indicate the potential for cost‐effective and high‐performance thermoelectric cooling modules based on PbSe.
科研通智能强力驱动
Strongly Powered by AbleSci AI