Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction

计算机科学 系列(地层学) 混乱的 图形 变压器 时间序列 算法 人工智能 机器学习 理论计算机科学 物理 古生物学 量子力学 电压 生物
作者
Lang Xiong,Liyun Su,Xiaoyi Wang,C.-T. Pan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111516-111516 被引量:12
标识
DOI:10.1016/j.asoc.2024.111516
摘要

Chaotic time series data is extensively applied in financial stocks, climate monitoring, and sea clutter, in which data fusion from various sources and multi-sensor information make accurate predictions of chaotic time series challenging under complex nonlinear conditions. Previous works focus on designing different model frameworks to capture the temporal dependence and extract richer nonlinear features to improve the accuracy of univariate chaotic time series prediction, which ignores the spatial dependence of multivariable. However, in this paper, we argue that spatial correlation among multiple variables is essential to improve the prediction accuracy of chaotic time series. To fill the gap, we innovatively propose a Dynamic Adaptive Graph Convolutional Transformer with a Broad Learning System (DAGCT-BLS), a GCN and Transformer-based model utilizing multivariate spatial dependence for multi-dimensional chaotic time series forecasting. In DAGCT-BLS, the multivariate chaotic time series are reconstructed into the phase space, and the reconstructed data are rapidly feature-extracted using a cascade network BLS with frozen weights to maximize the retention of chaotic properties and nonlinear relationships. Then, the Dynamic Adaptive Graph Convolutional Network (DAGCN) is proposed to capture the spatial correlation among the multiple variables. Finally, improved multi-head attention of the Transformer Encoder is used to capture the temporal dependence of the phase point sequence. Experiments of our proposed model on three datasets (Lorenz, Rossler, and Sea clutter) show that DAGCT-BLS can achieve the best prediction performance and have strong interpretability, and multivariate-based joint modeling of chaotic time series helps to improve the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小远远完成签到,获得积分10
1秒前
2秒前
CipherSage应助Dave采纳,获得10
3秒前
tleeny发布了新的文献求助10
3秒前
陈惠123发布了新的文献求助10
4秒前
ka发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
莫123发布了新的文献求助10
8秒前
李健应助单身的绮菱采纳,获得10
8秒前
9秒前
打打应助Hibiscus95采纳,获得10
9秒前
10秒前
11秒前
胖Q完成签到 ,获得积分20
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
liciky完成签到 ,获得积分10
14秒前
潘健康发布了新的文献求助10
14秒前
复杂的乐蕊完成签到,获得积分10
14秒前
Dave发布了新的文献求助10
14秒前
林一发布了新的文献求助10
16秒前
今后应助积极的老鼠采纳,获得10
16秒前
彭于晏应助yuhan采纳,获得10
16秒前
sin3xas4sin3x完成签到,获得积分10
17秒前
18秒前
上官若男应助Rosemary采纳,获得10
18秒前
Lim1819完成签到 ,获得积分10
19秒前
脑洞疼应助小胡爱科研采纳,获得10
19秒前
lin发布了新的文献求助20
20秒前
20秒前
23秒前
23秒前
Hibiscus95发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879