Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction

计算机科学 系列(地层学) 混乱的 图形 变压器 时间序列 算法 人工智能 机器学习 理论计算机科学 物理 古生物学 量子力学 电压 生物
作者
Lang Xiong,Liyun Su,Xiaoyi Wang,C.-T. Pan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111516-111516 被引量:12
标识
DOI:10.1016/j.asoc.2024.111516
摘要

Chaotic time series data is extensively applied in financial stocks, climate monitoring, and sea clutter, in which data fusion from various sources and multi-sensor information make accurate predictions of chaotic time series challenging under complex nonlinear conditions. Previous works focus on designing different model frameworks to capture the temporal dependence and extract richer nonlinear features to improve the accuracy of univariate chaotic time series prediction, which ignores the spatial dependence of multivariable. However, in this paper, we argue that spatial correlation among multiple variables is essential to improve the prediction accuracy of chaotic time series. To fill the gap, we innovatively propose a Dynamic Adaptive Graph Convolutional Transformer with a Broad Learning System (DAGCT-BLS), a GCN and Transformer-based model utilizing multivariate spatial dependence for multi-dimensional chaotic time series forecasting. In DAGCT-BLS, the multivariate chaotic time series are reconstructed into the phase space, and the reconstructed data are rapidly feature-extracted using a cascade network BLS with frozen weights to maximize the retention of chaotic properties and nonlinear relationships. Then, the Dynamic Adaptive Graph Convolutional Network (DAGCN) is proposed to capture the spatial correlation among the multiple variables. Finally, improved multi-head attention of the Transformer Encoder is used to capture the temporal dependence of the phase point sequence. Experiments of our proposed model on three datasets (Lorenz, Rossler, and Sea clutter) show that DAGCT-BLS can achieve the best prediction performance and have strong interpretability, and multivariate-based joint modeling of chaotic time series helps to improve the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
dengsiqian发布了新的文献求助10
2秒前
不安的嘉熙完成签到,获得积分10
2秒前
Kenny发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
李楼村完成签到,获得积分10
3秒前
h丶小虫完成签到,获得积分10
3秒前
腼腆的耷发布了新的文献求助10
4秒前
zhou发布了新的文献求助10
4秒前
亳亳发布了新的文献求助10
4秒前
Genius发布了新的文献求助10
4秒前
李老头发布了新的文献求助10
4秒前
5秒前
情怀应助邻街采纳,获得10
6秒前
6秒前
gl7183完成签到,获得积分10
6秒前
6秒前
7秒前
自由的聋五完成签到,获得积分10
7秒前
jackmilton完成签到,获得积分10
7秒前
深渊与海发布了新的文献求助10
7秒前
xuyw应助岩中花述采纳,获得10
7秒前
8秒前
西瓜发布了新的文献求助10
9秒前
科研通AI6应助风中泰坦采纳,获得10
9秒前
852应助晴朗采纳,获得10
10秒前
Aurora发布了新的文献求助10
10秒前
10秒前
壹吾鱼完成签到,获得积分10
10秒前
11秒前
152van发布了新的文献求助10
11秒前
小衫生完成签到,获得积分20
11秒前
ZhangHaoYuan完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906