Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction

计算机科学 系列(地层学) 混乱的 图形 变压器 时间序列 算法 人工智能 机器学习 理论计算机科学 物理 量子力学 生物 古生物学 电压
作者
Lang Xiong,Liyun Su,Xiaoyi Wang,C.-T. Pan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111516-111516 被引量:12
标识
DOI:10.1016/j.asoc.2024.111516
摘要

Chaotic time series data is extensively applied in financial stocks, climate monitoring, and sea clutter, in which data fusion from various sources and multi-sensor information make accurate predictions of chaotic time series challenging under complex nonlinear conditions. Previous works focus on designing different model frameworks to capture the temporal dependence and extract richer nonlinear features to improve the accuracy of univariate chaotic time series prediction, which ignores the spatial dependence of multivariable. However, in this paper, we argue that spatial correlation among multiple variables is essential to improve the prediction accuracy of chaotic time series. To fill the gap, we innovatively propose a Dynamic Adaptive Graph Convolutional Transformer with a Broad Learning System (DAGCT-BLS), a GCN and Transformer-based model utilizing multivariate spatial dependence for multi-dimensional chaotic time series forecasting. In DAGCT-BLS, the multivariate chaotic time series are reconstructed into the phase space, and the reconstructed data are rapidly feature-extracted using a cascade network BLS with frozen weights to maximize the retention of chaotic properties and nonlinear relationships. Then, the Dynamic Adaptive Graph Convolutional Network (DAGCN) is proposed to capture the spatial correlation among the multiple variables. Finally, improved multi-head attention of the Transformer Encoder is used to capture the temporal dependence of the phase point sequence. Experiments of our proposed model on three datasets (Lorenz, Rossler, and Sea clutter) show that DAGCT-BLS can achieve the best prediction performance and have strong interpretability, and multivariate-based joint modeling of chaotic time series helps to improve the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星辰大海应助Wqian采纳,获得10
3秒前
3秒前
7秒前
15秒前
16秒前
科目三应助朴素的松采纳,获得10
17秒前
Jodie发布了新的文献求助10
20秒前
20秒前
Heinrich完成签到,获得积分10
21秒前
Lucas应助inter采纳,获得10
25秒前
无极微光应助科研通管家采纳,获得20
28秒前
Orange应助科研通管家采纳,获得10
28秒前
Verity应助科研通管家采纳,获得10
28秒前
28秒前
丘比特应助科研通管家采纳,获得10
28秒前
28秒前
苏新天完成签到 ,获得积分10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
Liangang应助科研通管家采纳,获得10
28秒前
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
huanger应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
小新应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
一叶知秋应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
31秒前
跳跃的翼完成签到,获得积分10
34秒前
健忘可愁完成签到,获得积分10
35秒前
跳跃的翼发布了新的文献求助10
36秒前
37秒前
无花果应助加百莉采纳,获得10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550