Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction

计算机科学 系列(地层学) 混乱的 图形 变压器 时间序列 算法 人工智能 机器学习 理论计算机科学 物理 古生物学 量子力学 电压 生物
作者
Lang Xiong,Liyun Su,Xiaoyi Wang,C.-T. Pan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111516-111516 被引量:12
标识
DOI:10.1016/j.asoc.2024.111516
摘要

Chaotic time series data is extensively applied in financial stocks, climate monitoring, and sea clutter, in which data fusion from various sources and multi-sensor information make accurate predictions of chaotic time series challenging under complex nonlinear conditions. Previous works focus on designing different model frameworks to capture the temporal dependence and extract richer nonlinear features to improve the accuracy of univariate chaotic time series prediction, which ignores the spatial dependence of multivariable. However, in this paper, we argue that spatial correlation among multiple variables is essential to improve the prediction accuracy of chaotic time series. To fill the gap, we innovatively propose a Dynamic Adaptive Graph Convolutional Transformer with a Broad Learning System (DAGCT-BLS), a GCN and Transformer-based model utilizing multivariate spatial dependence for multi-dimensional chaotic time series forecasting. In DAGCT-BLS, the multivariate chaotic time series are reconstructed into the phase space, and the reconstructed data are rapidly feature-extracted using a cascade network BLS with frozen weights to maximize the retention of chaotic properties and nonlinear relationships. Then, the Dynamic Adaptive Graph Convolutional Network (DAGCN) is proposed to capture the spatial correlation among the multiple variables. Finally, improved multi-head attention of the Transformer Encoder is used to capture the temporal dependence of the phase point sequence. Experiments of our proposed model on three datasets (Lorenz, Rossler, and Sea clutter) show that DAGCT-BLS can achieve the best prediction performance and have strong interpretability, and multivariate-based joint modeling of chaotic time series helps to improve the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
唐的一笔发布了新的文献求助10
1秒前
研友_VZG7GZ应助佳慧采纳,获得10
1秒前
JUGG发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
酷爱小飞发布了新的文献求助10
3秒前
少年游完成签到,获得积分20
5秒前
深情安青应助123采纳,获得10
5秒前
6秒前
苗条的代曼完成签到,获得积分10
6秒前
韶华关注了科研通微信公众号
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
山高水长完成签到,获得积分20
10秒前
10秒前
闪电发布了新的文献求助10
10秒前
11秒前
霜幕发布了新的文献求助10
11秒前
积极如雪完成签到,获得积分10
12秒前
13秒前
13秒前
优美紫槐发布了新的文献求助10
13秒前
优雅泡芙完成签到,获得积分10
13秒前
14秒前
学术菜鸟发布了新的文献求助30
15秒前
16秒前
16秒前
16秒前
贺贺发布了新的文献求助10
16秒前
17秒前
18秒前
麻烦~发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711933
求助须知:如何正确求助?哪些是违规求助? 5206722
关于积分的说明 15265734
捐赠科研通 4864032
什么是DOI,文献DOI怎么找? 2611152
邀请新用户注册赠送积分活动 1561416
关于科研通互助平台的介绍 1518736