Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction

计算机科学 系列(地层学) 混乱的 图形 变压器 时间序列 算法 人工智能 机器学习 理论计算机科学 物理 古生物学 量子力学 电压 生物
作者
Lang Xiong,Liyun Su,Xiaoyi Wang,C.-T. Pan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111516-111516
标识
DOI:10.1016/j.asoc.2024.111516
摘要

Chaotic time series data is extensively applied in financial stocks, climate monitoring, and sea clutter, in which data fusion from various sources and multi-sensor information make accurate predictions of chaotic time series challenging under complex nonlinear conditions. Previous works focus on designing different model frameworks to capture the temporal dependence and extract richer nonlinear features to improve the accuracy of univariate chaotic time series prediction, which ignores the spatial dependence of multivariable. However, in this paper, we argue that spatial correlation among multiple variables is essential to improve the prediction accuracy of chaotic time series. To fill the gap, we innovatively propose a Dynamic Adaptive Graph Convolutional Transformer with a Broad Learning System (DAGCT-BLS), a GCN and Transformer-based model utilizing multivariate spatial dependence for multi-dimensional chaotic time series forecasting. In DAGCT-BLS, the multivariate chaotic time series are reconstructed into the phase space, and the reconstructed data are rapidly feature-extracted using a cascade network BLS with frozen weights to maximize the retention of chaotic properties and nonlinear relationships. Then, the Dynamic Adaptive Graph Convolutional Network (DAGCN) is proposed to capture the spatial correlation among the multiple variables. Finally, improved multi-head attention of the Transformer Encoder is used to capture the temporal dependence of the phase point sequence. Experiments of our proposed model on three datasets (Lorenz, Rossler, and Sea clutter) show that DAGCT-BLS can achieve the best prediction performance and have strong interpretability, and multivariate-based joint modeling of chaotic time series helps to improve the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助程老板采纳,获得10
1秒前
Yuxin完成签到,获得积分10
1秒前
Rayoo发布了新的文献求助50
4秒前
Yuxin发布了新的文献求助10
4秒前
自渡完成签到 ,获得积分10
8秒前
9秒前
传奇3应助nano采纳,获得10
9秒前
蓝莓果关注了科研通微信公众号
10秒前
时光完成签到,获得积分10
10秒前
情怀应助by采纳,获得10
10秒前
10秒前
10秒前
12秒前
13秒前
今后应助Yuxin采纳,获得10
14秒前
yu完成签到,获得积分10
15秒前
一颗橙子发布了新的文献求助10
15秒前
细心香烟完成签到 ,获得积分10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
不懈奋进应助科研通管家采纳,获得30
16秒前
嗯哼应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
Raymond应助科研通管家采纳,获得10
17秒前
南国应助科研通管家采纳,获得10
17秒前
chaotianjiao完成签到 ,获得积分10
17秒前
17秒前
Raymond应助科研通管家采纳,获得10
17秒前
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
快乐应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
猪猪hero发布了新的文献求助10
17秒前
ding应助科研通管家采纳,获得10
17秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388