CFCN: An HLA-peptide Prediction Model based on Taylor Extension Theory and Multi-view Learning

扩展(谓词逻辑) 计算机科学 人工智能 程序设计语言
作者
Bing Rao,Bing Han,Leyi Wei,Zeyu Zhang,Xinbo Jiang,Balachandran Manavalan
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (10): 977-990
标识
DOI:10.2174/0115748936299044240202100019
摘要

Background: With the increasing development of biotechnology, many cancer solutions have been proposed nowadays. In recent years, Neo-peptides-based methods have made significant contributions, with an essential prerequisite of bindings between peptides and HLA molecules. However, the binding is hard to predict, and the accuracy is expected to improve further. Methods: Therefore, we propose the Crossed Feature Correction Network (CFCN) with deep learning method, which can automatically extract and adaptively learn the discriminative features in HLA-peptide binding, in order to make more accurate predictions on HLA-peptide binding tasks. With the fancy structure of encoding and feature extracting process for peptides, as well as the feature fusion process between fine-grained and coarse-grained level, it shows many advantages on given tasks. Results: The experiment illustrates that CFCN achieves better performances overall, compared with other fancy models in many aspects. Conclusion: In addition, we also consider to use multi-view learning methods for the feature fusion process, in order to find out further relations among binding features. Eventually, we encapsulate our model as a useful tool for further research on binding tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘依梦完成签到 ,获得积分10
1秒前
wx发布了新的文献求助10
2秒前
英姑应助滕擎采纳,获得10
3秒前
3秒前
iNk应助fuyuhaoy采纳,获得10
3秒前
灵巧尔芙发布了新的文献求助10
5秒前
夕禾发布了新的文献求助10
6秒前
散逸层梦游举报求助违规成功
6秒前
模糊中正举报求助违规成功
6秒前
寻道图强举报求助违规成功
6秒前
6秒前
伊伊完成签到,获得积分20
6秒前
7秒前
8秒前
秃头小北鼻完成签到,获得积分10
8秒前
8秒前
呆萌的u完成签到,获得积分10
8秒前
9秒前
Doctor_Xu22发布了新的文献求助10
10秒前
10秒前
月光咸鱼完成签到,获得积分10
11秒前
13秒前
小柯基学从零学起完成签到 ,获得积分10
13秒前
小茹发布了新的文献求助10
14秒前
14秒前
whiteside发布了新的文献求助10
15秒前
滕擎发布了新的文献求助10
16秒前
儒雅笑蓝完成签到,获得积分10
16秒前
16秒前
16秒前
研友_Z6Qrbn完成签到,获得积分10
17秒前
17秒前
丰知然应助加菲丰丰采纳,获得10
18秒前
19秒前
Sempervivum完成签到 ,获得积分10
20秒前
20秒前
fvnsj完成签到,获得积分10
20秒前
上官若男应助斯文火龙果采纳,获得10
22秒前
LYT完成签到,获得积分10
22秒前
墩墩应助夕禾采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292561
求助须知:如何正确求助?哪些是违规求助? 2928864
关于积分的说明 8438726
捐赠科研通 2600953
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642924