Rapid and accurate quality evaluation of Angelicae Sinensis Radix based on near-infrared spectroscopy and Bayesian optimized LSTM network

根(腹足类) 近红外光谱 人工智能 模式识别(心理学) 偏最小二乘回归 支持向量机 化学 计算机科学 机器学习 植物 心理学 神经科学 生物
作者
Lei Bai,Zhi‐Tong Zhang,Huanhuan Guan,Wenjian Liu,Li Chen,Dongping Yuan,Pan Chen,Xue Mei,Guojun Yan
出处
期刊:Talanta [Elsevier BV]
卷期号:275: 126098-126098 被引量:6
标识
DOI:10.1016/j.talanta.2024.126098
摘要

The authentic traditional Chinese medicines (TCMs) including Angelicae Sinensis Radix (ASR) are the representative of high-quality herbals in China. However, ASR from authentic region being adulterated or counterfeited is frequently occurring, and there is still a lack of rapid quality evaluation methods for identifying the authentic ASR. In this study, the color features of ASR were firstly characterized. The results showed that the authentic ASR cannot be fully identified by color characteristics. Then near-infrared (NIR) spectroscopy combined with Bayesian optimized Long Short-Term Memory (BO-LSTM) was used to evaluate the quality of ASR, and the performance of BO-LSTM with common classification and regression algorithms was compared. The results revealed that NIR spectroscopy combined with BO-LSTM not only successfully distinguished authentic, non-authentic and adulterated ASR with 100 % accuracy, but also accurately predicted the adulteration concentration of authentic ASR (R2>0.99). Moreover, BO-LSTM demonstrated excellent performance in classification and regression compared with common algorithms (ANN, SVM, PLSR, etc.). Overall, the proposed strategy could quickly and accurately evaluate the quality of ASR, which provided a reference for other TCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的泥猴桃完成签到,获得积分10
刚刚
1秒前
斯人发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
CipherSage应助电致阿光采纳,获得10
2秒前
一二发布了新的文献求助10
2秒前
2秒前
子唯发布了新的文献求助10
2秒前
3秒前
喜乐多完成签到 ,获得积分10
4秒前
bean发布了新的文献求助10
4秒前
liu应助孜然xy采纳,获得10
5秒前
研友_VZG7GZ应助xr采纳,获得10
5秒前
凉白开完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
9秒前
脑洞疼应助大力水手采纳,获得10
11秒前
玛卡巴卡发布了新的文献求助10
11秒前
乐乐应助肥四采纳,获得10
11秒前
Ava应助Alrigh-t采纳,获得10
11秒前
思源应助欧阳大娘采纳,获得30
11秒前
我是老大应助Hannahcx采纳,获得10
13秒前
快乐大炮发布了新的文献求助10
13秒前
彬彬有李发布了新的文献求助10
13秒前
13秒前
可爱的函函应助Fuao采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
Raven完成签到,获得积分10
14秒前
15秒前
15秒前
CodeCraft应助Distance采纳,获得10
15秒前
15秒前
科目三应助淡然又菡采纳,获得30
16秒前
汉堡包应助冷酷的柜门采纳,获得10
16秒前
17秒前
orixero应助称心花生采纳,获得10
18秒前
19秒前
芒果发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660135
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740763
捐赠科研通 2930886
什么是DOI,文献DOI怎么找? 1604684
邀请新用户注册赠送积分活动 757433
科研通“疑难数据库(出版商)”最低求助积分说明 734426