已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Human and Machine: The Impact of Machine Input on Decision Making Under Cognitive Limitations

人类多任务处理 计算机科学 机器学习 人工智能 认知 灵活性(工程) 过程(计算) 人机系统 风险分析(工程) 认知心理学 心理学 医学 统计 数学 神经科学 操作系统
作者
Tamer Boyacι,Caner Canyakmaz,Francis de Véricourt
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (2): 1258-1275 被引量:40
标识
DOI:10.1287/mnsc.2023.4744
摘要

The rapid adoption of artificial intelligence (AI) technologies by many organizations has recently raised concerns that AI may eventually replace humans in certain tasks. In fact, when used in collaboration, machines can significantly enhance the complementary strengths of humans. Indeed, because of their immense computing power, machines can perform specific tasks with incredible accuracy. In contrast, human decision makers (DMs) are flexible and adaptive but constrained by their limited cognitive capacity. This paper investigates how machine-based predictions may affect the decision process and outcomes of a human DM. We study the impact of these predictions on decision accuracy, the propensity and nature of decision errors, and the DM’s cognitive efforts. To account for both flexibility and limited cognitive capacity, we model the human decision-making process in a rational inattention framework. In this setup, the machine provides the DM with accurate but sometimes incomplete information at no cognitive cost. We fully characterize the impact of machine input on the human decision process in this framework. We show that machine input always improves the overall accuracy of human decisions but may nonetheless increase the propensity of certain types of errors (such as false positives). The machine can also induce the human to exert more cognitive efforts, although its input is highly accurate. Interestingly, this happens when the DM is most cognitively constrained, for instance, because of time pressure or multitasking. Synthesizing these results, we pinpoint the decision environments in which human-machine collaboration is likely to be most beneficial. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4744 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的败完成签到,获得积分20
2秒前
3秒前
苦杏仁发布了新的文献求助10
5秒前
6秒前
番茄发布了新的文献求助10
7秒前
dominic12361完成签到 ,获得积分10
9秒前
我是老大应助老阳采纳,获得10
10秒前
11秒前
BioRick发布了新的文献求助10
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
JPH1990应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得30
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
Singularity应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Ava应助失眠的友卉采纳,获得10
13秒前
13秒前
小王发布了新的文献求助10
14秒前
子规啼发布了新的文献求助10
17秒前
坚定的乐天完成签到,获得积分10
20秒前
竹斟酒完成签到,获得积分10
20秒前
21秒前
jeep先生完成签到,获得积分10
21秒前
fafa发布了新的文献求助10
23秒前
老阳发布了新的文献求助10
24秒前
27秒前
任老九发布了新的文献求助10
27秒前
子规啼完成签到,获得积分10
27秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227979
关于积分的说明 9777835
捐赠科研通 2938188
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962