Human and Machine: The Impact of Machine Input on Decision Making Under Cognitive Limitations

人类多任务处理 计算机科学 机器学习 人工智能 认知 灵活性(工程) 过程(计算) 人机系统 风险分析(工程) 认知心理学 心理学 数学 医学 统计 操作系统 神经科学
作者
Tamer Boyacι,Caner Canyakmaz,Francis de Véricourt
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (2): 1258-1275 被引量:52
标识
DOI:10.1287/mnsc.2023.4744
摘要

The rapid adoption of artificial intelligence (AI) technologies by many organizations has recently raised concerns that AI may eventually replace humans in certain tasks. In fact, when used in collaboration, machines can significantly enhance the complementary strengths of humans. Indeed, because of their immense computing power, machines can perform specific tasks with incredible accuracy. In contrast, human decision makers (DMs) are flexible and adaptive but constrained by their limited cognitive capacity. This paper investigates how machine-based predictions may affect the decision process and outcomes of a human DM. We study the impact of these predictions on decision accuracy, the propensity and nature of decision errors, and the DM’s cognitive efforts. To account for both flexibility and limited cognitive capacity, we model the human decision-making process in a rational inattention framework. In this setup, the machine provides the DM with accurate but sometimes incomplete information at no cognitive cost. We fully characterize the impact of machine input on the human decision process in this framework. We show that machine input always improves the overall accuracy of human decisions but may nonetheless increase the propensity of certain types of errors (such as false positives). The machine can also induce the human to exert more cognitive efforts, although its input is highly accurate. Interestingly, this happens when the DM is most cognitively constrained, for instance, because of time pressure or multitasking. Synthesizing these results, we pinpoint the decision environments in which human-machine collaboration is likely to be most beneficial. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4744 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
我是老大应助优秀的枕头采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
惜曦完成签到 ,获得积分10
1秒前
自觉的凛完成签到,获得积分10
3秒前
3秒前
李健的粉丝团团长应助doby采纳,获得10
3秒前
4秒前
6秒前
OuHou发布了新的文献求助10
6秒前
自由的风完成签到,获得积分10
7秒前
7秒前
9秒前
lys完成签到,获得积分20
9秒前
chen完成签到,获得积分10
9秒前
9秒前
10秒前
nini完成签到 ,获得积分10
10秒前
三毛完成签到,获得积分10
11秒前
自由的风发布了新的文献求助10
11秒前
上官若男应助wang采纳,获得10
12秒前
13秒前
lys发布了新的文献求助10
13秒前
doby发布了新的文献求助10
14秒前
14秒前
ZZD发布了新的文献求助10
16秒前
khurram完成签到,获得积分10
16秒前
qq发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
22秒前
吴海娇发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629