Human and Machine: The Impact of Machine Input on Decision Making Under Cognitive Limitations

人类多任务处理 计算机科学 机器学习 人工智能 认知 灵活性(工程) 过程(计算) 人机系统 风险分析(工程) 认知心理学 心理学 医学 统计 数学 神经科学 操作系统
作者
Tamer Boyacı,Caner Canyakmaz,Francis de Véricourt
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (2): 1258-1275 被引量:84
标识
DOI:10.1287/mnsc.2023.4744
摘要

The rapid adoption of artificial intelligence (AI) technologies by many organizations has recently raised concerns that AI may eventually replace humans in certain tasks. In fact, when used in collaboration, machines can significantly enhance the complementary strengths of humans. Indeed, because of their immense computing power, machines can perform specific tasks with incredible accuracy. In contrast, human decision makers (DMs) are flexible and adaptive but constrained by their limited cognitive capacity. This paper investigates how machine-based predictions may affect the decision process and outcomes of a human DM. We study the impact of these predictions on decision accuracy, the propensity and nature of decision errors, and the DM’s cognitive efforts. To account for both flexibility and limited cognitive capacity, we model the human decision-making process in a rational inattention framework. In this setup, the machine provides the DM with accurate but sometimes incomplete information at no cognitive cost. We fully characterize the impact of machine input on the human decision process in this framework. We show that machine input always improves the overall accuracy of human decisions but may nonetheless increase the propensity of certain types of errors (such as false positives). The machine can also induce the human to exert more cognitive efforts, although its input is highly accurate. Interestingly, this happens when the DM is most cognitively constrained, for instance, because of time pressure or multitasking. Synthesizing these results, we pinpoint the decision environments in which human-machine collaboration is likely to be most beneficial. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4744 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞿霞完成签到 ,获得积分10
1秒前
1秒前
avalanche应助ceng采纳,获得30
2秒前
Jasper应助adverse采纳,获得10
2秒前
2秒前
我是老大应助Passer采纳,获得10
2秒前
Chao发布了新的文献求助10
3秒前
3秒前
三哥完成签到,获得积分10
3秒前
科研通AI6应助干净冬莲采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
6秒前
小马甲应助科研老炮采纳,获得10
6秒前
Owen应助周周周周周采纳,获得10
6秒前
顾矜应助什么都不懂采纳,获得10
6秒前
研友_VZG7GZ应助Chao采纳,获得10
8秒前
9秒前
UMA发布了新的文献求助10
10秒前
10秒前
11完成签到,获得积分10
10秒前
11秒前
11秒前
bjyx发布了新的文献求助10
11秒前
Yang发布了新的文献求助10
11秒前
丘比特应助哈哈哈哈哈哈采纳,获得10
12秒前
寻找论文完成签到,获得积分10
12秒前
0128lun发布了新的文献求助10
13秒前
13秒前
科研川完成签到 ,获得积分10
13秒前
14秒前
镓氧锌钇铀应助li采纳,获得20
14秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
时尚捕发布了新的文献求助10
16秒前
16秒前
17秒前
orixero应助arrebol采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914