达帕格列嗪
卡格列净
药代动力学
最大值
药理学
化学
体内
基于生理学的药代动力学模型
内分泌学
医学
2型糖尿病
糖尿病
生物
生物技术
作者
Xueru He,Ying Li,Yajing Li,Caihui Guo,Yuhao Fu,Xuejiao Xun,Zhi Wang,Zhanjun Dong
标识
DOI:10.1016/j.biopha.2023.114663
摘要
Donafenib (DONA), a deuterium derivative of sorafenib, is used for advanced hepatocellular carcinoma (HCC). Dapagliflozin (DAPA) and canagliflozin (CANA) are sodium–glucose co-transporter 2 (SGLT2) inhibitors used for T2DM, which is frequently comorbid with HCC. Three drugs are substrates of UGT1A9 isoenzyme. This study aimed to evaluate donafenib–dapagliflozin and donafenib–canagliflozin pharmacokinetic interactions and explore the potential mechanisms. Rats were divided into seven groups (n = 6) that received donafenib (1), dapagliflozin (2), canagliflozin (3), dapagliflozin and donafenib (4), canagliflozin and donafenib (5), donafenib and dapagliflozin (6), donafenib and canagliflozin (7). The concentrations of drugs were determined by an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The messenger RNA (mRNA) expressions were measured by quantitative RT-PCR. Multiple doses of dapagliflozin caused donafenib maximum plasma concentration (Cmax) to increase 37.01%. Canagliflozin increased donafenib Cmax 1.77-fold and the area under the plasma concentration–time curves (AUC0−t and AUCinf) 1.39- and 1.41-fold, respectively, while reducing the apparent clearance (CLz) 28.38%. Multiple doses of donafenib increased dapagliflozin AUC0−t 1.61-fold, AUCinf 1.77-fold, whereas its CLz reduced 40.50%. Furthermore, donafenib caused similar changes in canagliflozin pharmacokinetics. The PCR results demonstrated that dapagliflozin inhibited the mRNA expression of Ugt1a7 in liver and donafenib decreased the expression of Ugt1a7 mRNA in liver and intestine. Increased exposure to these drugs may be due to their metabolism inhibition mediated by Ugt1a7. These pharmacokinetic interactions observed in this study may be of clinical significance, which may help adjust dose properly and avoid toxicity effects in patients with HCC and T2DM.
科研通智能强力驱动
Strongly Powered by AbleSci AI